Строение и функции гемоглобина. Физиология
Рефераты >> Медицина >> Строение и функции гемоглобина. Физиология

рук, он был назван "пальцеотпечатковым" ("fingerprint") методом.

7. Для определения состава полипептидных цепей в каком-нибудь гемоглобиновом типе можно воспользоваться и так называемым " рекомбинационным " или " гибридизационным " методом.Если смешать известный и неизвестный гемоглобин при рН 4,3,они диссоциируют полумолекулами, состоящими из соответствующих пар полипептидных цепей. После нейтрализации раствора полипептидные пары снова комбинируются в целые гемоглобиновые молекулы, при чем могут получится и новые "гибридные"гемоглобиновые молекулы. Их идентифицирование электрофоретическим способом или хроматографией позволит сделать заключение о полипептидной структуре неизвестного гемоглобинового типа. Этот метод предназначен также преимущественно для научных исследовательских целей.

8. Иммунологические методы.

9. Кроме вышеуказанных методов при дифференциации отдельных типов гемоглобина пользуются также различиями в кристаллическом строении, изоэлектрической точке и т.д.

10. Разработаны также методы цитологического определения типа гемоглобина в эритроцитах на мазке крови. Так наличие HbF в эритроцитах можно доказать путем обработки кровяного мазка лимоннокислой буферной смесью с рН 3,2-3,6. При этих условиях HbA извлекается и эритроциты, в которых он преобладал,остаются только в виде эритроцитных теней, тогда как HbF сохраняется и эритроциты, содержащие преимущественно этот тип гемоглобина, сохраняют свое содержание.[8]

ГЕМОГЛОБИН ПРИ СЕРПОВИДНОКЛЕТОЧНОЙ АНЕМИИ

В гемоглобине S остаток Glu А2(6)бета замещен на Val.Остаток А2 (Glu или Val) располагается на поверхности молекулы гемоглобина и контактирует в водой, и замещение полярного остатка Glu на неполярный Val приводит к появлению на поверхности бета-субъеденицы "липкого участка". Этот липкий участок присутствует как в оксигенированном, так и в дезоксигенированном гемоглобине S (в гемоглобине А отсутствует). На поверхности дезоксигенированного гемоглобина существует комплементарный участок, способный прочно связываться с липким участком бета-субъединицы, тогда как в оксигенированном гемоглобине этот участок маскируется другими группами (рис. 20). Когда гемоглобин S переходит в дезоксигенированное состояние, его липкий участок связывается с комплементарным участком на другой молекуле дезоксигенированного гемоглобина. Происходит полимеризация дезоксигемоглобина S и его осаждение в виде длинных волокон. Волокна дезоксигемоглобина S механически деформируют эритроцит, предавая ему серповидную форму, что приводит к лизису клеток и множеству вторичных клинических проявлений. Таким образом, если бы можно было можно поддерживать гемоглобин S в оксигенированном состоянии или по крайней мере свести к минимуму концентрацию дезоксигенированного гемоглобина S, то нам удалось бы предотвратить полимеризацию дезоксигенированного гемоглобина S и образование "серповидных"клеток. Ясно, что полимеризации подвержена Т-форма гемоглобина S. Интересно отметить (хотя в практическом плане это малосущественно), что ферри-ион метгемоглобина А остается в плоскости порфиринового кольца и тем самым стабилизирует R-форму гемоглобина. То же относится и к гемоглобину при серповидноклеточной анемии: гемоглобин S в ферри-состоянии (метгемоглобин S) не подвержен полимеризации, поскольку он стабилизирован в R-форме.

В дезоксигемоглобине А тоже имеется рецепторный участок, способный взаимодействовать с липким участком оксигенированного или дезоксигенированного гемоглобина S(рис.20), но присоединения "липкого" гемоглобина S к к дезоксигемоглобину А недостаточно для образования полимера, поскольку сам дезоксигемоглобин А липкого участка не содержит и не может связывать следующую молекулу гемоглобина. Следовательно, связывание дезоксигемоглобина А с R- или Т-формой гемоглобина S перекрывает полимеризацию.

В результате полимеризации дезоксигемоглобина S образуются спиральные фибрилярные структуры. При этом каждая молекула гемоглобина контактирует с четырьмя соседними молекулами (рис. 21). Образование подобных трубчатых волокон ответственно за механические нарушения в содержащем их эритроците: он приобретает серповидную форму (рис. 22), становится подверженным лизису в момент прохождения им щелей в синусоидах селезенки.

ТАЛАССЕМИИ

Другая важная группа нарушений, связанных с аномалиями гемоглобина - талассемии. Для них характерна пониженная скорость синтеза альфа-цепей гемоглобина (альфа-талассемия) или бета-цепей (бета-талассемия). Это приводит к анемии,которая может принимать очень тяжелую форму. В последние годы достигнут ощутимый прогресс в выяснении молекулярных механизмов, ответственных за развитие талассемии.[9]

СПИСОК ЛИТЕРАТУРЫ

I. Основная литература:

1. Р.Марри, Д.Греннер, П.Мейес, В.Родуэлл, Биохимия человека, том 1, "Мир", Москва 1993г., стр.52

2. И.Тодоров, Клинические лабораторные исследования в педиатрии, "Медицина и физкультура",София 1968г., стр. 278-281

3. Р.Марри, Д.Греннер, П.Мейес, В.Родуэлл, Биохимия человека, том 1, "Мир", Москва 1993г., стр.56-59

4. И.Тодоров, Клинические лабораторные исследования в педиатрии, "Медицина и физкультура",София 1968г., стр.283-284

5. тоже стр.293

6. тоже стр.285-286

7. тоже стр.293-304

8. Р.Марри, Д.Греннер, П.Мейес, В.Родуэлл, Биохимия человека, том 1, "Мир", Москва 1993 г.6 стр. 60-62

II. Дополнительная литература

Dean J., Schechter A.N. Sickle-cell anemia: Molekular and lubar basis of therapeutic approaches. (3 parts), N.E.Med., 1978, 299, 752, 804, 863.

Klotz I.M., Haney D.N., King L.C. Ritional approaches chemotherapy: Antisickling agents, Sience, 1981, 219


Страница: