Фундаментальные физические взаимодействия
Рефераты >> Естествознание >> Фундаментальные физические взаимодействия

Во второй половине ХХ в. физики, занятые изучением фундаментальной структуры материи, получили удивительные результаты. Было открыто множество новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частиц.

Новые частицы обычно открывают в реакциях рассеяния уже известных частиц. Для этого сталкивают частицы с как можно большими энергиями, а затем исследуют продукты их взаимодействия и фрагменты, на которые распались образовавшиеся частицы. В наше время ускорители, создающие интенсивные пучки частиц с высокими энергиями.

Мир су6атомных частиц поистине многообразен. Среди них и «кирпичики», из которых построено вещество: составляющие атомные ядра протоны и нейтроны, а также электроны, обращающиеся вокруг ядер. Но есть и такие частицы, которые в окружающем нас веществе практически не встречаются - резонансы. Время их жизни - мельчайшие доли секунды. По истечении этого чрезвычайно короткого вре­мени они распадаются на обычные частицы. Таких нестабильных короткоживущих частиц поразительно много: их известно уже свыше трех сотен.

В 50-70-е гг. физики были совершенно сбиты с толку многочисленностью, разно­образием и необычностью вновь открытых субатомных частиц. Если в конце 40-х гг. было известно 15 элементарных частиц, то в конце 70-х гг. уже около четырехсот.

Совершенно непонятно, для чего столько частиц: являются ли элементарные частицы хаотическими и случайными осколками материи или, возможно, за взаимодействиями этих частиц скрывается некоторый порядок, указывающий на существование фундаментальной структуры субъядерного мира. Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений. Миру су6атомных частиц присущи объективные закономерности и глубокий структурный порядок. В основе этого порядка - фундаментальные физические взаимодействия.

В свой повседневной жизни человек сталкивается с множеством сил, действующих на тела: сила ветра или потока воды; давление воздуха; мощный выброс взрывающихся химических веществ; мускульная сила человека; вес предметов; давление квантов света; притяжение и отталкивание электрических зарядов; сейсмические волны, вызы­вающие подчас катастрофические разрушения; вулканические извер­жения, приводившие к гибели цивилизаций и т.д. Одни силы дейст­вуют непосредственно при контакте с телом, другие, например, гравитация, действуют на расстоянии, через пространство. Но, как выяснилось, в результате развития естествознания, несмотря на столь большое разнообразие, все действующиe в природе силы можно свести к четыpем фундаменталъным взаимодействuям. Именно эти взаимодейст­вия в конечном счете отвечают за все изменения в мире, именно они являются источником всех материальных преобразований тел, про­цессов. Каждое из четырех фундаментальных взаимодействий имеет сходство с тремя остальными и в то же время свои отличия. Изучение свойств фундаментальных взаимодействий составляет главную зада­чу современной физики.

Гравитация.

Гравитация первым из четырех фундаментальных взаимодейст­вий стала предметом научного исследования. Созданная в ХVII в. ньютоновская теория гравитации (закон всемирного тяготения) по­зволила впервые осознать истинную роль гравитации как силы при­роды.

Гравитация обладает рядом особенностей, отличающих ее от дру­гих фундаментальных взаимодействий. Наиболее удивительной осо­бенностью гравитации является ее малая интенcивность. Гравитаци­онное взаимодействие в 1039 раз меньше силы взаимодействия элект­рических зарядов. Как может такое слабое взаимодействие оказать­ся господствующей силой во Вселенной?

Все дело во второй удивительной черте гравитации - ее универ­сальности. Ничто во Вселенной не может избежать гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации, вызывает гравитационное притяжение. Гравитация возрастает по мере образования все больших скоплений вещества. И хотя притяжение одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной. Это проявляется и в повседневной жизни: мы ощущаем гравитацию потому, что все атомы Земли сообща притяги­вают нас. Зато в микромире роль гравитации ничтожна. Никакие квантовые эффекты в гравитации пока не доступны наблюдению.

Если бы размеры атома водорода определялись гравитацией, а не взаимодей­ствием между электрическими зарядами, то радиус низшей (самой близкой к ядру) орбиты электрона превосходил бы радиус доступной наблюдению части Вселен­ной.

Кроме того, гравитация - дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В астрономическом масштабе гравитационное взаимодействие, как прави­ло, играет главную роль. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике.

Сила гравитации, действующая между частицами, всегда пред­ставляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивание еще никогда не наблюдалось.

Электромагнетизм. По величине электрические силы намного превосходят гравитаци­онные, поэтому в отличие от слабого гравитационного взаимодействия электрические силы, действующие между телами обычных разме­ров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.).

В течение долгого времени электрические и магнитные процессы изучались независимо друг от друга. Решающий шаг в познании электромагнетизма сделал в середине XIX в. Дж.К Максвелл, объединивший электричество и магнетизм в единой теории электромагнетизма - первой единой теории поля.

Существование электрона (единицы электрического заряда) было твердо установлено в 90-е гг. XIX в. Но не все материальные частицы являются носителями электрического заряда. Электричес­ки нейтральны, например, фотон и нейтрино. В этом электричество и отличается от гравитации. Все матеpиальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заря­женные частицы.

Долгое время загадкой была и природа магнетизма. Как и электрические заряды, одноименные магнитные полюсы отталкиваются, а разноименные - притягиваются. В отличие от электрических заря­дов магнитные полюсы встречаются не по отдельности, а только парами - северный полюс и южный. Хорошо известно, что в обыч­ном магнитном стержне один конец действует как северный полюс, а другой - как южный. Еще с древнейших времен известны попытки получить посредством разделения магнита лишь один изолирован­ный магнитный полюс - монополь. Но все они заканчивались неуда­чей: на месте разреза возникали два новых магнита, каждый из кото­рых имел и северный, и южный полюсы. Может быть, существование изолированных магнитных полюсов в природе исключено? Опреде­ленного ответа на этот вопрос пока не существует. Некоторые совре­менные теории допускают возможность существования монополя.


Страница: