Философские аспекты моделирования как метода познания
Рефераты >> Философия >> Философские аспекты моделирования как метода познания

2.2. О кибернетическом моделировании и моделировании мыслительной деятельности человека.

2.2.1. Особенности кибернетического моделирования.

В современном научном знании весьма широко распространена тенденция построения кибернетических моделей объектов самых различных классов. "Кибернетический этап в исследовании сложных систем ознаменован существенным преобразованием "языка науки", характеризуется возможностью выражения основных особенностей этих систем в терминах теории информации и управления. Это сделало доступным их математический анализ." (2 с169) Кибернетическое моделирование используется и как общее эвристическое средство, и как искусственный организм, и как система-заменитель, и в функции демонстрационной. Использование кибернетической теории связи и управления для построения моделей в соответствующих областях основывается на максимальной общности ее законов и принципов: для объектов живой природы, социальных систем и технических систем.(3,5). Широкое использование кибернетического моделирования позволяет рассматривать этот "логико-методологический" феномен как неотъемлемый элемент "интеллектуального климата" современной науки" (2 с170). В этой связи говорят об особом "кибернетическом стиле мышления", о "кибернетизации" научного знания. С кибернетическим моделированием связываются возможные направления роста процессов теоризации различных наук, повышение уровня теоретических исследований. Рассмотрим некоторые примеры, характеризующие включение кибернетических идей в другие понятийные системы.

Анализ биологических систем с помощью кибернетического моделирования обычно связывают с необходимостью объяснения некоторых механизмов их функционирования (убедимся в этом ниже, рассматривая моделирование психической деятельности человека). В этом случае система кибернетических понятий и принципов оказывается источником гипотез относительно любых самоуправляемых систем, т.к. идеи связей и управления верны для этой области применения идей.

Характеризуя процесс кибернетического моделирования (2 с200), обращают внимание на следующие обстоятельства. Модель, будучи аналогом исследуемого явления, никогда не может достигнуть степени сложности последнего. При построении модели прибегают к известным упрощениям, цель которых – стремление отобразить не весь объект, а с максимальной полнотой охарактеризовать некоторый его "срез". Задача заключается в том, чтобы путем введения ряда упрощающих допущений выделить важные для исследования свойства. Создавая кибернетические модели, выделяют информационно - управленческие свойства. Все иные стороны этого объекта остаются вне рассмотрения. На чрезвычайную важность поисков путей исследования сложных систем методом наложения определенных упрощающих предположений указывает P.Эшби. "В прошлом, - отмечает он, - наблюдалось некоторое пренебрежение к упрощениям . Однако мы, занимающиеся исследованием сложных систем, не можем себе позволить такого пренебрежения. Исследователи сложных систем должны заниматься упрощенными формами, ибо всеобъемлющие исследования бывают зачастую совершенно невозможны".

Анализируя процесс приложения кибернетического моделирования в различных областях знания, можно заметить расширение сферы применения кибернетических моделей: использование в науках о мозге, в социологии, в искусстве, в ряде технических наук. В частности, в современной измерительной технике нашли приложение информационные модели.(3 с172). Возникшая на их основе информационная теория измерения и измерительных устройств – это новый подраздел современной прикладной метрологии.

В задачах самых различных классов используется принцип обратной связи. В частности Дейч предложил модель мотивации поведения, основанную на этом принципе. Эта модель позволила уточнить некоторые механизмы поведения животных. По мнению Дейча (10 с180), обучение животного в лабиринте состоит не в выработке ряда реакций, а в установлении последовательности ряда субцелей, поочередное достижение которых приводит к окончательной цели – кормушке. Здесь имеет место не обучение, а регуляция уже выученных реакций. Чтобы объяснить это, Дейч разработал гипотетическую схему, основанную на мотивационной модели с обратной связью и использующей также принципы общих причинных факторов, цепных реакций и тормозных связей.

2.2.2. Моделирование мыслительной деятельности человека.

Для исследования мозга важны методы классической физиологии высшей нервной деятельности, морфофизиологии, электрофизиологии, биохимии и т.д. Однако возникла потребность в новых методах, раскрывающих деятельность мозга с иной стороны – с точки зрения закономерностей процессов управления и переработки информации.

Попытки системного исследования мозга не новы. Еще Н.М.Сеченов поставил задачу вскрыть сущность механизма деятельности мозга путем отыскания лежащих в основе этой деятельности принципов. Им был открыт один из них – принцип рефлексов. И.П.Павлов исследовал принципы управления динамикой высших нервных центров, анализа и синтеза, поступающих из вне сигналов и показал, каковы особенности деятельности мозга при различных состояниях последнего. Как отмечает Н.Кочергин (6 с151), "для изучения мозга как сложной функциональной системы важное значение приобретает метод моделирования, позволяющий вскрыть структуру мозга, форму связей нейронов и различных участков мозга между собой, принципы нейронной организации, закономерности переработки, передачи, хранения и кодирования информации в мозге и т.д." Использование ЭВМ в моделировании деятельности мозга позволяет отражать процессы в их динамике, но у этого метода в данном приложении есть свои сильные и слабые стороны. Наряду с общими чертами, присущими мозгу и моделирующему его работу устройству, такими, как:

¨ материальность;

¨ закономерный характер всех процессов;

¨ общность некоторых форм движения материи;

¨ отражение;

¨ принадлежность к классу самоорганизующихся динамических систем, в которых заложены:

a) принцип обратной связи;

b) структурно - функциональная аналогия;

c) способность накапливать информацию (4 с67).

Есть существенные отличия, такие как:

1. моделирующему устройству присущи лишь низшие формы движения – физическое, химическое, а мозгу кроме того – социальное, биологическое;

2. процесс отражения в мозге человека проявляется в субъективно-сознательном восприятии внешних воздействий. Мышление возникает в результате взаимодействия субъекта познания с объектом в условиях социальной среды;

3. В языке человека и машины. Язык человека носит понятийный характер. Свойства предметов и явлений обобщаются с помощью языка. Моделирующее устройство имеет дело с электрическими импульсами, которые соотнесены человеком с буквами, числами. Таким образом, машина "говорит" не на понятийном языке, а на системе правил, которая по своему характеру является формальной, не имеющей предметного содержания.


Страница: