Микро макро и мега миры
Рефераты >> Философия >> Микро макро и мега миры

В экспериментах Г. Герца в результате искровых разрядов между двумя заряженными шарами появлялись электромагнит­ные волны. Когда они падали на круговой проволочный виток, то создавали в нем токи, о появлении которых свидетельство­вали искры, проскакивающие через разрыв. Г. Герц успешно провел отражение этих волн и их интерференцию, т.е. те явле­ния, которые характерны для световых волн, а затем измерил длину электромагнитных волн. Зная частоту колебаний, он смог подсчитать скорость распространения электромагнитных волн, которая оказалась равна скорости света. Это прямо под­твердило гипотезу Максвелла.

После экспериментов Г. Герца в физике окончательно ут­вердилось понятие поля не в качестве вспомогательной матема­тической конструкции, а как объективно существующей физи­ческой реальности. Был открыт качественно новый, своеобразный вид материи.

Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

• Вещество и поле различаются как корпускулярные и волновые сущности: вещество дискретно и состоит из атомов, а поле непрерывно.

• Вещество и поле различаются по своим физическим ха­рактеристикам: частицы вещества обладают массой по­коя, а поле — нет.

• Вещество и поле различаются по степени проницаемо­сти: вещество мало проницаемо, а поле, наоборот, пол­ностью проницаемо.

• Скорость распространения поля равна скорости света, а скорость движения частиц вещества меньше ее на много порядков.

В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказа­лись разрушенными представления классической физики о ве­ществе и поле как двух качественно своеобразных видах материи.

2. Микромир: концепции современной физики.

Атомистическая концепция строения материи.

Атомистическая гипотеза строения материи, выдвинутая в античности Демокритом, была возрождена в XVIII в. химиком Дж. Дальтоном, который принял атомный вес водорода за еди­ницу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свой­ства атома. В XIX в. Д. И. Менделеев построил систему хими­ческих элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном Превращении атомов одних элементов в атомы других элемен­тов. Изучение радиоактивности было продолжено французски­ми физиками супругами Пьером и Марией Кюри, открывшими новые радиоактивные элементы полоний и радий.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Дж. Томсоном электрона - отрица­тельно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Исходя из огромной, по сравнению с электроном, массы положительно заряженной частицы, английский физик У. Томсон (лорд Кельвин) предложил в 1902 г. первую модель атома —положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг». Эта Идея была развита Дж. Томсоном. Модель атома Дж. Томсона, над которой он работал почти 15 лет, не устояла перед опытной проверкой.

В 1908 г. Э. Марсден и X. Гейгер, сотрудники Э. Резерфорда, провели опыты по прохождению альфа-частиц через тонкие пластинки из золота и других металлов и обнаружили, что почти все они проходят через пластинку, будто нет препятствия, и только 1/10000 из них испытывает сильное отклонение. По мо­дели Дж. Томсона это объяснить не удавалось, но Э. Резерфорд нашел выход. Он обратил внимание на то, что большая часть частиц отклоняется на малый угол, а малая — до 150°. Э. Резер­форд пришел к выводу, что они ударяются о какое-то препятст­вие, это препятствие представляет собой ядро атома — положи­тельно заряженную микрочастицу, размер которой (10-12 см) очень мал по сравнению с размерами атома (10-8 см), но в ней почти полностью сосредоточена масса атома.

Модель атома, предложенная Э. Резерфордом в 1911 г., на­поминала солнечную систему: в центре находится атомное яд­ро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны - отрица­тельный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электриче­ский заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов — атом электрически нейтрален.

Неразрешимое противоречие этой модели заключалось в том, что электроны, чтобы не потерять устойчивость, должны двигаться вокруг ядра. В то же время они, согласно законам электродинамики, обязательно должны излучать электромаг­нитную энергию. Но в таком случае электроны очень быстро потеряли бы всю свою энергию и упали на ядро.

Следующее противоречие связано с тем, что спектр излуче­ния электрона должен быть непрерывным, так как электрон, приближаясь к ядру, менял бы свою частоту. Опыт же показы­вает, что атомы излучают свет только определенных частот. Именно поэтому атомные спектры называют линейчатыми. Другими словами, планетарная модель атома Резерфорда оказа­лась несовместимой с электродинамикой Дж. К. Максвелла.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характе­ристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, ос­нованную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных со­стояний (говоря языком планетарной модели, несколько ста­ционарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состоя­ния в другое атом излучает или поглощает порцию энергии.

Постулаты Бора объясняют устойчивость атомов: находя­щиеся в стационарных состояниях электроны без внешней на то причины не излучают электромагнитной энергии. Становит­ся понятным, почему атомы химических элементов не испус­кают излучения, если их состояние не изменяется: объясняются и линейчатые спектры атомов: каждой линии спектра соответ­ствует переход электрона из одного состояния в другое.

Теория атома Н. Бора позволяла дать точное описание ато­ма водорода, состоящего из одного протона и одного электро­на, достаточно хорошо согласующееся с экспериментальными данными. Дальнейшее же распространение теории на много­электронные атомы и молекулы столкнулось с непреодолимы­ми трудностями. Чем подробнее теоретики пытались описать движение электронов в атоме, определить их орбиты, тем большим было расхождение теоретических результатов с экспе­риментальными данными. Как стало ясно в ходе развития квантовой теории, эти расхождения главным образом были свя­заны с волновыми свойствами электрона. Длина волны движу­щегося в атоме электрона равна примерно 10-8 см, т.е. она того же порядка, что и размер атома. Движение частицы, принадле­жащей какой-либо системе, можно с достаточной степенью точности описывать как механическое движение материальной точки по определенной орбите (траектории) только в том слу­чае, если длина волны частицы пренебрежимо мала по сравне­нию с размерами системы. Другими словами, следует учиты­вать, что электрон не точка и не твердый шарик, он обладает внутренней структурой, которая может изменяться в зависимо­сти от его состояния. При этом детали внутренней структуры электрона неизвестны.


Страница: