Автоматизация неразрушающего контроля на сложных технологических объектах
Рефераты >> Программирование и компьютеры >> Автоматизация неразрушающего контроля на сложных технологических объектах

1. надежность (безопасность);

2. последствия отказа;

3. возможность уменьшения вероятности возникновения и тяжести последствий.

Пусть K=(K1 .,Kj, .Kj*) (3) - векторный показатель критичности, где Kj - j-й частный показатель, который отражает некоторую одну частную сторону, одну из характеристик объекта. Различные системы могут характеризоваться различными наборами частных показателей критичности. Эти частные показатели характеризуются как количественными показателями, так и могут принимать значения как лингвистические переменные.

Набор показателей Kj, принадлежащих К, может быть следующим:

· резервирование;

· возможность отказа;

· тяжесть последствий отказа;

· устойчивость элемента к воздействию внешних неблагоприятных факторов среды;

· контролируемость состояния элементов в ходе эксплуатации;

· продолжительность присутствия риска вследствие отказа;

· возможность локализации отказа и др.

Частные значения показателей критичности определяются различными видами шкал [2]. Пример частных показателей критичности и их шкалы приведен в табл.1

Таблица 3. Частные показатели критичности и лингвистические шкалы оценивания

Показатели

Порядковые шкалы

Тяжесть последствий

1. Отказ приводит к катастрофической ситуации 2. В результате отказа возникает необходимость в принятии экстренных мер для предотвращения катастрофической ситуации 3. Отказ приводит к потере некоторых эксплуатационных свойств. В результате чего время эксплуатации может сократиться 4. Отказ приводит к потере некоторых эксплуатационных свойств, не влияющих на продолжительность эксплуатации 5. Отказ изменяет режимы работы зависимых элементов, что увеличивает вероятности их отказов

Резервирование

1. Резервирование невозможно

2. Резервирование возможно, но отсутствует

3. Однократное резервирование без контроля состояния резерва

3. Однократное резервирование и состояние резерва контролируется

4. Двукратное и более резервирование без контроля состояния резерва

6. Двукратное и более резервирование, состояние резерва контролируется

Вероятность отказа

1. Элемент обладает относительно высокой вероятностью отказа в течение эксплуатации 2. Отказ считается возможным и вероятным (конструкция прошла достаточный объем испытаний, обеспечивающий приемлемый уровень вероятности безотказной работы) 3. Отказ считается возможным, но маловероятным (отказов данного элемента на предшествующих аналогах не наблюдалось) 4. Отказ возможен, но крайне маловероятен (при проектировании приняты меры для исключения отказа, обеспечен высокий показатель безотказности, достигнута стабильность характеристик, отсутствуют предельные температурные, радиационные, вибрационные нагрузки и т.д. 5. Отказ считается невозможным (отсутствуют логические условия для возникновения отказа)

Устойчивость к воздействию внешних неблагоприятных факторов

1. Из опыта эксплуатации известно, что в условиях воздействия внешних факторов ресурс меньше, чем проектный 2. Опыт эксплуатации в условиях воздействия внешних факторов отсутствует, но анализ предсказывает, что ресурс меньше проектного 3. Фактический ресурс в реальных условиях эксплуатации близок к проектному. 4. Известно, что реальный ресурс больше проектного 5. Отсутствуют неблагоприятные факторы внешнего воздействия в период эксплуатации

Контроль состояния элемента

1. Состояние элемента не контролируется 2. Предусмотрен контроль без прогнозирования 3. Предусмотрен прогнозирующий контроль

Контроль состояния элемента

Риск существует от начала функционирования до: 1) окончания эксплуатации 2) завершения второго этапа функционирования 3) завершения первого этапа функционирования

Возможность локализации

1. Локализация нужна, но технически невозможна в данной конструкции 2. Предусмотрены меры к локализации отказа 3. Специальные меры к локализации отказа не нужны

Операция ранжирования элементов по степени критичности может осуществляться на различных уровнях структурирования объектов систем, агрегатов и узлов, частей конструкций и отдельных элементов на основе анализа морфологических блоков и структурных взаимосвязей [З]. Чем больше вес элемента, тем он важнее для обеспечения безопасности объекта.

Пусть в результате оценивания критичности элементов выделено множество критичных элементов

E={ej, j ЄJ},J={1, .,n}, (4)

на надежность которых следует обратить особое внимание при решении задачи обеспечения безопасности объекта.

Формально задача ранжирования элементов по степени критичности с учетом одного или совокупности критериев относится к классу задач определения предпочтений многомерных альтернатив [4, 5, 6]. Ее решение в каждом конкретном случае зависит от типов систем, выбранных частных показателей критичности, экспертной информации и т.д.

2.1.2 Анализ данных по критичным элементам

Для организации нормативно-технического обеспечения и сопровождения данными критичных элементов на различных этапах восстановления необходимо создание и ведение баз данных о дефектах и их положениях, размерах, результатах испытаний и диагностики, проблемах восстановления, структурных схемах систем и деревьях отказов и т.д. Эти данные являются важными как для оценки вероятности проявления дефектов, так и для более тщательного их изучения. Ведение "информационного паспорта" исследуемых критичных элементов с данными о технико-экономических показателях и операциях, которые выполнялись с элементами на предыдущих периодах восстановления, позволяют реализовать наиболее рациональные пути и способы устранения дефектов.

На основе анализа информационного паспорта элемента для различных периодов восстановления можно говорить: о контроле над развитием дефекта, сравнивать обнаруженные дефекты с определенными эталонами для их ранжирования, проводить классификационный анализ, принимая к вниманию аспекты связанные с безотказностью и ресурсами для системы. Информационный паспорт элементов это также основа для выбора и построения принципов контроля с учетом технических характеристик и экономических показателей.

Отсутствие эксплуатационных данных и материалов диагностики и контроля не позволяет рационально организовывать эксплуатацию систем таким образом, чтобы расходовать технический ресурс как можно дольше, не снижая при этом уровень надежности в целом.

2.1.3 Механизмы выявления различных дефектов

Проблема рационального использования технического ресурса для отдельных элементов и агрегатов системы ставит задачи исследования моделей и механизмов деградации элементов систем. Построение моделей для моделирования развития дефектов различного типа для различных типов элементов (кабели, трубы, двигатели и т.д.) с учетом различных внешних условий (окружающей среды) и возмущений является актуальной задачей.


Страница: