C, N, O-ацилирование
Рефераты >> Химия >> C, N, O-ацилирование

Оглавление

1. Введение 3

2. С‑ацилирование 4

3. О‑ацилирование 7

4. N‑ацилирование 10

5. Список литературы 11

Ацилирование - введение ацильной группы (ацила) RCO в молекулу органического соединения путем замещения атома водорода. В широком смысле ацилирование это замещение любого атома или группы атомов на ацила. В зависимости от атома к которому присоединяют ацил различают C-, N-, O-, S- ацилирование…

(Химическая энциклопедия, том I, стр. 233).

Реакции ацилирования находят широкое применение в современной органическом синтезе. Наиболее распространенными являются реакции С‑, O‑ и N‑ацилирования, с помощью которых получают соответственно кетоны, сложных эфиры или амиды.

Частными случаями реакции ацилирования являются реакции формилирования (введение НСО‑группы), ацетилирования (СН3СО‑группы) и бензоилирования (С6Н5СО‑группы).

Несмотря на различия в методах проведения реакций, общим для всех вариантов ацилирования является реакция некого субстрата и ацилирующего агента, протекающая как правило по механизму электрофильного замещения. Наиболее распространенными ацилирующими агентами являются ангидриды и хлорангидриды карбоновых кислот.

Реакции С‑ацилирования

Наиболее распространенной реакцией С-ацилирования является открытая еще в XIX веке реакция Фриделя‑Крафтса. Механизм этой реакции достаточно долго оставался загадкой, однако теперь является точно установленным, что реакция протекает по механизму электрофильного замещения.

Реакции электрофильного замещения в ароматическом ряду протекают по одному и тому же пути и начинаются с атаки электрофильной частицы (будь то катион или положительно заряженный конец сильнополяризованной связи) на ароматическую p-электронную систему. При этом образуется резонансно стабилизированный неароматический s-комплекс, или бензониевый ион. За этим следуют потеря протона и сопутствующая ей реароматизация с образованием соединения, в котором электрофильная частица заменила атом водорода у первоначально атакованного углерода.

В случае реакции ацилирования в качестве ацилирующего агента как правило применяются ацилхлориды в присутствии кислот Льюиса (чаще всего хлорида алюминия). В таком случае реакция начинается с взаимодействия ацилхлорида с катализатором с образованием собственно электрофильного агента:

Положение равновесия зависит от природы реагентов и от растворителя: высокая диэлектрическая проницаемость сдвигает равновесие в сторону образования карбениевого иона.

Затем электрофильный агент реагирует с ароматической молекулой:

Выбор катализатора определяется реакционной способностью ароматического соединения. Чаще всего применяют хлорид алюминия и только для очень реакционноспособных систем (например, для тиофена) используются хлорид цинка, серную кислоту и др.

Тригалогениды алюминия образуют комплексы и с ацилирующим средством, и с образующимся карбонильным соединением; комплекс с последним в условиях реакции устойчив. Для синтезов по Фриделю-Крафтцу с ацилгалогенидами необходимы поэтому по меньшей мере мольные количества катализатора. При взаимодействии с ангидридами кислот получающаяся кислота связывает еще один моль катализатора, поэтому в целом необходимы по крайней мере два моль катализатора. В каждом случае по окончании реакции образовавшийся комплекс кетона с хлоридом алюминия должен быть гидролитически разрушен (соляной кислотой со льдом).

Реакцию ацилирования по Фриделю-Крафтцу удается распространить на ароматические углеводороды (в том числе полициклические), галогенпроизводные, реакционноспособные гетероциклы (например, тиофен, фуран). Ароматические амины образуют с катализатором неацилирующийся комплекс. Если же аминогруппа защищена ацетилированием, то реакция удается.

Ароматические соединения с сильноинактивирующими заместителями, например с нитро-, циан- и карбонильными группами, не ацилируются по Фриделю-Крафтцу. Поэтому при ацилировании можно не опасаться вторичного и полизамещения.

Интересным случаем реакции Фриделя-Крафтца является взаимодействие с ангидридами дикарбоновых кислот, приводящее к образованию оксокислот, которые в дальнейшем можно перевести в хиноны:

Растворителем при ацилировании по Фриделю-Крафтцу может служить избыток ацилируемого углеводорода. Иногда применяют дисульфид углерода, так как он практически не влияет на реакционную способность хлорида алюминия, но комплекс образовавшегося ароматического кетона с хлоридом алюминия остается при этом чаще всего в твердой фазе, поэтому при больших загрузках реакционная смесь с трудом перемешивается и обрабатывается. Кроме того, дисульфид углерода ядовит и очень легко воспламеняется. В нитробензоле или галогеноуглеродах (дихлорэтане или трихлороэтилене) активность катализатора несколько понижена из-за комплексообразования, кроме того ацилирование по Фриделю-Крафтцу в них можно применять только при температурах ниже 50oC, так как в противном случаем они сами вступают в реакцию.

В менее полярном 1,2-дихлорэтане (этиленхлориде) из нафталина получают a-кетон и, напротив, в сильнополяризованной среде (нитробензола) - b-кетон.

Общая методика ацилирования по Фриделю-Крафтцу.

В трегорлой колбе емкостью 1л, снабженной мешалкой и капельной воронкой с хлоркальциевой трубкой, смешивают 400мл 1,2-дихлорэтана с 1,2 моля тонкорастертого хлорида алюминия и добавляют по каплям при перемешивании и охлаждении ледяной водой 1,05 моля ацилхлорида. Затем из капельной воронки при охлаждении водой добавляют 1 моль ароматического соединения так, чтобы температура смеси поддерживалась около 20оС. Реакционную смесь перемешивают еще 1 ч. и оставляют на ночь. При ацилировании галогенбензолов нагревают 5 ч. при 50оС, причем ацилируемое соединение используемся в качестве растворителя (все количества галогенбензола сразу помещают в колбу).

Для разложения комплекса кетона с хлоридом алюминия содержимое колбы осторожно выливают на 500мл льда, выпадающий гидроксид алюминия переводят в раствор, добавляя небольшое количество концентрированной соляной кислоты. Затем в делительной воронке отделяют органический слой, а водные дважды извлекают дихлорэтаном. Объединенные вытяжки тщательно промывают водой, 2%-ным раствором гидроксида натрия и снова водой. После сушки карбонатом калия растворитель отгоняют, а кетон перегоняют в вакууме.

Приведенная методика также пригодна для полумикросинтезов.

Реакции О‑ацилирования.

Реакция этерификации, являющаяся по сути реакцией О‑ацилирования, используется в качестве основного способа получения сложных эфиров.

Вследствие малой активности карбонильных групп в карбоновых кислотах они, как правило, медленно реагируют со спиртами. Этерификацию можно существенно ускорить, добавляя сильные кислоты (серную кислоту, безводный хлороводород, сульфоновые кислоты, кислые ионообменные смолы):


Страница: