Модемы и коммуникационные протоколы
Рефераты >> Программирование и компьютеры >> Модемы и коммуникационные протоколы

Электрический сигнал, распространяющийся по каналу, характеризуется тремя параметрами – амплитудой, частотой и фазой. Именно изменение одного из этих параметров, или даже совместно некоторой их совокупности в зависимости от значений информационных бит и составляет физическую сущность процесса модуляции. Каждому информационному элементу соответствует фиксированный отрезок времени, на котором электрический сигнал имеет определенные значения своих параметров, характеризующих значение этого информационного элемента. Этот отрезок времени называют бодовым интервалом. Если кодируемый элемент соответствует одному биту информации, который может принимать значение 0 или 1, то на бодовом интервале параметры сигнала соответственно могут принимать одну из двух предопределенных совокупностей значений амплитуды, частоты и фазы. В этом случае модуляционная скорость (еще ее называют линейной или бодовой) равна информационной, т.е. 1 бод=1 бит/с. Но кодируемый элемент может соответствовать не одному, а, например, двум битам информации. В этом случае информационная скорость будет вдвое превосходить бодовую, а параметры сигнала на бодовом интервале могут принимать одну из четырех совокупностей значений, соответствующих 00, 01, 10 или 11.

В общем случае, если на бодовом интервале кодируется n бит, то информационная скорость будет превосходить бодовую в n раз. Но количество возможных состояний сигнала в трехмерном (в общем случае) пространстве – амплитуда, частота, фаза – будет равно 2n. Это значит, что демодулятор модема, получив на бодовом интервале некий сигнал, должен будет сравнить его с 2n эталонными сигналами и безошибочно выбрать один из них для декодирования искомых n бит. Таким образом, с увеличением емкости кодирования и ростом информационной скорости относительно бодовой, расстояние в сигнальном пространстве между двумя соседними точками сокращается в степенной прогрессии. А это, в свою очередь, накладывает все более жесткие требования к "чистоте" канала передачи. Теоретически возможная скорость в реальном канале определяется известной формулой Шеннона:

V = Flog (1+S/N), где F – ширина полосы пропускания канала, S/N – отношение сигнал/шум.

Второй сомножитель и определяет возможности канала с точки зрения его зашумленности по достоверной передаче сигнала, кодирующего не один бит информации в бодовом интервале. Так, например, если отношение сигнал/шум соответствует 20 dB, т.е. мощность сигнала, доходящего до удаленного модема, в 100 раз превосходит мощность шума, и используется полная полоса канала тональной частоты (3100 Гц), максимальная граница по Шеннону равна 20640 бит/с.

Основной задачей модема является преобразование исходной цифровой информации в вид, пригодный для передачи по каналу связи, и обратное преобразование на приеме. Вид модуляции и метод построения модема в значительной степени определяют скорость передачи данных и эффективность использования канала связи. Применительно к передаче данных по телефонным каналам, виды модуляции, используемые в модемах, регламентируются МККТТ. В Рекомендациях МККТТ определены основные технические характеристики модема, такие, как форма спектра передаваемого сигнала, структура настроечной комбинации, образующий полином скремблера (дескремблера) и другие параметры, обеспечивающие совместимость модемов, выпускаемых разными изготовителями.

Качество работы модема определяется способностью противодействовать мешающим факторам, а, именно:

· Гауссовскому шуму;

· межсимвольной интерференции, вызванной неидеальностью передаточной функции канала связи;

· флуктуациям фазы несущей частоты, обусловленным низкочастотной паразитной модуляцией в генераторном оборудовании систем передачи с частотным разделением каналов.

Поэтому для повышения качества работы модема требуется применение оптимальных (либо близких к ним) алгоритмов обработки сигналов, позволяющих уменьшить влияние мешающих факторов.

Повышение эффективности использования канала связи, т.е. удельной скорости передачи (числа передаваемых бит на единицу полосы пропускания канала связи), требует применения в модеме следующих систем:

· адаптивного корректора сигнала для уменьшения межсимвольной интерференции в принимаемом сигнале;

· дискретного (или цифрового) формирователя спектра сигнала на передаче (в качестве его дополнительной функции может быть введение предыскажений с целью компенсации межсимвольной интерференции);

· скремблера (на передаче) и дескремблера (на приеме) для преобразования исходной последовательности данных в псевдослучайную и обратного преобразования на приеме;

· системы компенсации флуктуаций фазы несущей частоты,

Дуплексный режим передачи данных

Под дуплексным режимом работы модема понимается возможность передавать и принимать информацию одновременно. Проблема для модема заключается не в способности канала передавать дуплексную информацию, т.к. обычный телефоныый канал – дуплексный, а в возможности демодулятора модема распознать входной сигнал на фоне отраженного от аппаратуры АТС собственного выходного сигнала. При этом его мощность может быть не только сравнима, но в большинстве случаев значительно превосходить мощность принимаемого полезного сигнала (так как обьединение и разделение передачи и приема производится с помощью дифсистем, которые невозможно идеально настроить на полное подавление сигнала передатчика местного модема). Поэтому, могут ли модемы передавать информацию одновременно в обе стороны определяется возможностями протокола физического уровня.

Соединение абонента передачи данных с телефонным каналом может осуществляться с помощью четырехпроводного окончания (главным образом с арендованными каналами) и/или двухпроводным окончанием (в основном с коммутируемыми каналами). При четырехпроводном окончании передача и прием осуществляются независимо друг от друга. В этом случае каждая пара используется для передачи информации только в одном направлении и проблемы разделения входного сигала и отраженного выходного не существует.

Передача данных по телефонным каналам с двухпроводным окончанием организуется с использованием одного из следующих методов:

· поочередой передачи в каждом из направлений (полудуплексный режим);

· частотного разделения направлений передачи (дуплексный режим: симметричный или ассимметричный – в зависимости от равенства или неравенства скоростей передачи в разных направлениях);

· одновременной передачи в обоих направлениях с подавлением на приеме отраженного сигнала собственного передатчика (дуплексный режим с эхокомпенсацией).

Наиболее простым в реализации и наименее эффективным по использованию канала связи является метод поочередной передачи (полудуплексный), т.к. передача ведется только в одном направлении, и имеют место потери времени на смену направлений передачи. Ввиду отсутствия проблем с взаимным проникновением подканалов передачи, а также с эхо-отражением, полудуплексные протоколы в общем случае характеризуются большей помехоустойчивостью и возможностью использования всей ширины полосы пропускания канала. Этот метод применяется при малых скоростях передачи (см.табл.1). Все протоколы, предназначенные для факсимильной связи – полудуплексные. С освоением более высоких скоростей появилась возможность организации на базе этого метода псевдодуплексной передачи (дуплексный режим оконечного оборудования данных при полудуплексной передаче в канале) – т.н. метод "ping-pong".


Страница: