Архитектура современных суперЭВМ
Рефераты >> Программирование и компьютеры >> Архитектура современных суперЭВМ

Архитектура современных суперЭВМ

Диалектическая спираль развития компьютерных технологий совершила свой очередной виток - опять, как и десять лет назад, в соответстви и с требованиями жизни, в моду входят суперкомпьютерные архитектуры. Безусловно, это уже не те монстры, которые помнят ветераны - новые технологии и требовательный рынок коммерческих применений существенно изменили облик современного суперкомпьютера, Теперь это не огромные шкафы с уникальной аппаратурой, вокруг которой колдуют шаманы от информатики, а вполне эргономичные системы с унифицированным программным обеспечением, совместимые со своими младшими собратьями.

Что такое суперЭВМ? Компьютеры с производительностью свыше 10 000 млн. теоретических операций в сек. (MTOPS), согласно определению Госдепартамента США, считаются суперкомпьютерами.

Следует отметить и другие основные признаки, характеризующие суперЭВМ, среди которых кроме высокой производительности:

• самый современный технологический уровень (например, GaAs-технология);

• специфические архитектурные решения, направленные на повышение быстродей- ствия (например, наличие операций над векторами);

• цена, обычно свыше 1-2 млн. долл.

Вместе с тем, существуют компьютеры, имеющие все перечисленные выше характеристики суперЭВМ, за исключением цены, которая для них составляет от нескольких сотен до 2 млн. долларов. Речь идет о мини-суперЭВМ, обладающим высокой производительностью, уступающей, однако, большим суперЭВМ. При этом у минисуперкомпьютеров, как правило, заметно лучше соотношение цена/производительность и существенно ниже эксплуатационные расходы: система охлаждения, электропитания, требования к площади помещения и др. С точки зрения архитектуры минисуперкомпьютеры не представляют собой некоторое особенное направление, поэтому в дальнейшем они отдельно не рассматриваются.

Сферы применения суперкомпьютеров

Для каких применений нужна столь дорогостоящая техника? Может показаться, что с ростом производительности настольных ПК и рабочих станций, а также серверов, сама потребность в суперЭВМ будет снижаться. Это не так. С одной стороны, целый ряд приложений может теперь успешно выполняться на рабочих станциях, но с другой стороны, время показало, что устойчивой тенденцией является появление все новых приложений, для которых необходимо использовать суперЭВМ.

Прежде всего следует указать на процесс проникновения суперЭВМ в совершенно недоступную для них ранее коммерческую сферу. Речь идет не только скажем, о графических приложениях для кино и телевидения, где требуется все та же высокая производительность на операциях с плавающей запятой, а прежде всего о задачах, предполагающих интенсивную (в том числе,и оперативную) обработку транзакций для сверхбольших БД. В этот класс задач можно отнести также системы поддержки принятия решений и организация информационных складов. Конечно, можно сказать, что для работы с подобными приложениями в первую очередь необходимы высокая производительность ввода-вывода и быстродействие при выполнении целочисленных операций, а компьютерные системы, наиболее оптимальные для таких приложений, например, MPP-системы Himalaya компании Tandem, SMP-компьютеры SGI CHAL ENGE, AlphaServer 8400 от DEC - это не совсем суперЭВМ. Но следует вспомнить, что такие требования возникают, в частности, со стороны ряда приложений ядерной физики, например, при обработке результатов экспериментов на ускорителях элементарных частиц. А ведь ядерная физика - классическая область применения суперЭВМ со дня их возникновения.

Как бы то ни было, наметилась явная тенденция к сближению понятий "мэйнфрейм", "многопроцессорный сервер" и "суперЭВМ". Нелишне заметить, что это происходит на фоне начавшегося во многих областях массированного перехода к централизации и укрупнению в противоположность процессу разукрупненияи децентрализации.

Традиционной сферой применения суперкомпьютеров всегда были научные исследования: физика плазмы и статистическая механика, физика конденсированных сред, молекулярная и атомная физика, теория элементарных частиц, газовая динамика и теория турбулентности, астрофизика. В химии - различные области вычислительной химии: квантовая химия (включая расчеты электронной структуры для целей конструирования новых материалов, например, катализаторов и сверхпроводников), молекулярная динамика, химическая кинетика, теория поверхностных явлений и химия твердого тела,конструирование лекарств. Естественно, что ряд областей применения находится на стыках соответствующих наук, например, химии и биологии, и перекрывается с техническими приложениями. Так, задачи метеорологии, изучение атмосферных явлений и, в первую очередь, задача долгосрочного прогноза погоды, для решения которой постоянно не хватает мощностей современных суперЭВМ, тесно связаны с решением ряда перечисленных выше проблем физики. Среди технических проблем, для решения которых используются суперкомпьютеры, укажем на задачи аэрокосмической и автомобильной промышленности, ядерной энергетики, предсказания и разработки месторождений полезных ископаемых, нефтедобывающей и газовой промышленности (в том числе проблемы эффективной эксплуатации месторождений, особенно трехмерные задачи их исследования), и, наконец, конструирование новых микропроцессоров и компьютеров, в первую очередь самих суперЭВМ.

Суперкомпьютеры традиционно применяются для военных целей. Кроме очевидных задач разработки оружия массового уничтожения и конструирования самолетов и ракет, можно упомянуть, например, конструирование бесшумных подводных лодок и др. Самый знаменитый пример - это американская программа СОИ. Уже упоминавшийся MPP-компьютер Министерства энергетики США будет применяться для моделирования ядерного оружия, что позволит вообще отменить ядерные испытания в этой стране.

Анализируя потенциальные потребности в суперЭВМ существующих сегодня приложений, можно условно разбить их на два класса. К первому можно отнести приложения, в которых известно, какой уровень производительности надо достигнуть в каждом конкретном случае, например, долгосрочный прогноз погоды. Ко второму можно отнести задачи, для которых характерен быстрый рост вычислительных затрат с увеличением размера исследуемого объекта. Например, в квантовой химии неэмпирические расчеты электронной структуры молекул требуют затрат вычислительных ресурсов, пропорциональных N^4 или И^5, где N условно характеризует размер молекулы. Сейчас многие молекулярные системы вынужденно исследуются в упрощенном модельном представлении. Имея в резерве еще более крупные молекулярные образования (биологические системы, кластеры и т.д.), квантовая химия дает пример приложения, являющегося "потенциально бесконечным" пользователем суперкомпьютерных ресурсов.

Есть еще одна проблема применения суперЭВМ, о которой необходимо сказать - это визуализация данных, полученных в результате выполнения расчетов. Часто, например, при решении дифференциальных уравнений методом сеток, приходится сталкиваться с гигантскими объемами результатов, которые в числовой форме человек просто не в состоянии обработать. Здесь во многих случаях необходимо обратиться к графической форме представления информации. В любом случае возникает задача транспортировки информации по компьютерной сети. Решению этого комплекса проблем в последнее время уделяется все большее внимание. В частности, знаменитый Национальный центр суперкомпьютерных приложений США (NCSA) совместно с компанией Silicon Graphics ведет работы по программе "суперкомпьютерного окружения будущего". В этом проекте предполагается интегрировать возможности суперкомпьютеров POWER CHALLENGE и средств визуализации компании SGI со средствами информационной супермагистрали.


Страница: