Процессоры. История развития. Структура. Архитектура
Рефераты >> Программирование и компьютеры >> Процессоры. История развития. Структура. Архитектура

Применительно к памяти различают на три адресных пространства: логическое, линейное и физическое. Основным режимом работы 32-разрядных процессоров считается защищенный режим, в котором работают все механизмы преобразования адресных пространств.

Логический адрес, также называется виртуальным, состоит из селектора (в реальном режиме – просто сегмента) и смещение. Смещение формируется суммированием компонентов (base, index, disp) в эффективный адрес. Поскольку каждая задача может иметь до 16К селекторов, а смещение, ограниченное размером сегмента, может достигать 4 Гб, логическое адресное пространство для каждой задачи может достигать 64 Тб. Все это пространство виртуальной памяти в принципе доступно программисту (этот ‘принцип” должна реализовывать операционная система).

Блок сегментации транслирует логическое адресное пространство в 32-битное пространство линейных адресов. Линейный адрес образуется сложением базового адресного сегмента с эффективным адресом. Базовый адрес сегмента в реальном режиме образуется умножением содержимого используемого сегментного регистра на 16 (как и в 8086). В защищенным режиме базовый адрес загружается из дескриптора, хранящегося в таблице, по селектору, загруженному в используемый сегментный регистр.

Физический 32-битный адрес памяти образуется после преобразования линейного адреса блоком страничной переадресации. В простейшем случае (при отключенном блоке страничной переадресации) линейный адрес совпадает с физическим – присутствующим на внешней шине адреса процессора. Включенный блок страничной переадресации осуществляет трансляцию линейного адреса в физический блоками (страницами) размером 4 Гб. Этот блок может включаться только в защищенном режиме.

Как и у процессоров 8086/8088, для обращения к памяти процессор (совместно с внешней схемой) формирует шинные сигналы MEMWR# (Memory Write) и MEMRD (Memory Read) для операции записи и считывания соответственно. Шина адреса разрядностью 32 бита позволяет адресовать 4 Гб физической памяти, но в реальном режиме доступен только 1 Мб, начинающийся с младших адресов.

В реальном режиме по адресации памяти обеспечивается совместимость с процессором 8086, который своей 16-битной адресной шиной охватывает пространство физической памяти в 1Мб. Для обеспечения совместимости с 80286 32-разрядные процессоры реализуют его ошибку, связанную с переполнением, возникающим при сложении адресов сегмента с эффективным адресом. При вычисление физического адреса возможно возникновение переполнение, которое вызовет появление единицы на линии А20 шины адреса. Максимальное значение адреса в реальном режиме 10FFEF достигается при Seg=FFFFh и EA=FFFFh. Для обеспечения полной программной совместимости с 8086 в РС используется вентиль GateA20, принудительно обнуляющий бит А20 системной шины адреса. Вентиль в РС управляется через программно-управляемый бит контроля клавиатуры 8042 или более быстрым способом (Gate A 20 Fast Control), определяемым чипсетом системной платы.

В реальном режиме размер сегмента фиксирован – как и 8086, он составляет 64 Кб (FFFFh). Попытка использования эффективного адреса, выходящего за границы сегмента, при 32-битной адресации вызывает исключение типа 13. При 16-битной адресации при вычисление эффективного адреса возможный перенос в разряд А16 игнорируется, и сегмент “сворачивается кольцом” (как и в 8086). Средства контроля следят и за переходом через границу сегмента во время обращения по “приграничному” адресу. При попытки адресации к слову, имеющему смещение FFFFh, или двойному слову со смещением FFFDh-FFFh (их старшие байты выходят за границу сегмента), или выполнения инструкции, все байты которой не умещаются в данном сегменте, процессор вырабатывает прерывание – исключение типа 13 (0Dh) – Segment Overrun Exception. При попытки выполнения инструкции ESCAPE с операндом памяти, не умещающимся в сегменте, вырабатывается исключение типа 9 – Processor Extension Segment Overrun Interrupt (только для 386).

8Система команд 32-разрядных процессоров предусматривает 11 режимов адресации операндов. Из них только два не имеют отношение к памяти:

· операнд-регистр, который может находится в любом 8, 16 или 32-битном регистре процессора.;

· непосредственный операнд (8, 16 или 32-бит), который может содержаться в самой команде.

Остальные девять режимов (табл. 3.1.) используются при формировании эффективного адреса операнда из памяти.

Эффективный адрес вычисляется с использованием комбинации следующих компонентов:

Смещение (Displacement или Disp) – 8-, 16- или 32-битное число, включенное в команду.

База (Base) – содержимое базового регистра. Обычно используется для указания на начало некоторого массива.

Индекс (Index) – содержимое индексного регистра. Обычно используется для выбора элемента массива.

Масштаб (Scale) – множитель (1, 2, 4 или 8), указанный в коде инструкции. Этот элемент используется для указания размера элемента массива. Доступен только в 32-битном режиме адресации.

Эффективный адрес вычисляется по формуле EA=Base+Index*Scale+Disp.

Отдельные слагаемые в этой формуле могут и отсутствовать. Возможные режимы адресации приведены в табл. 3.1.

Таблица 3.1. Режимы адресации памяти 32-битных процессоров

Прямая адресация

EA=Disp

Косвенная регистровая адресная Register Index Mode

EA=Base

Базовая адресации Based Mode

EA=Base+Disp

Индексная адресация Index Mode

EA=Index+Disp

Масштабированная индексная адресации Scaled Index Mode

EA=Scalex*Index+Disp*

Базово-индексная адресация Based Index Mode

EA=Base+Index*

Масштабированная базово-индексная адресация Based Scaled Index Mode

EA=Base+Scale* Index

Масштабированная базово-индексная адресация Based Index Mode with Displacement

EA=Base+Index+Disp

Масштабированная базово-индексная адресации со смещение Based Scaled Index with Displacement

EA=Base+Scale*Index+Disp*

Процессор может использовать режимы 32-битной или 16-битной адресации. Режим 16-битной адресации соответствует режимам процессоров 8086 и 80286, при этом в качестве компонентов адреса используются младшие 16 бит соответствующих регистров. Режим 32-битной адресации использует расширенные 32-разрядные регистры и имеет дополнительные режимы, использующие масштабирование индекса. Различия 16- и 32-битных режимов адресации приведены в табл. 3.2.


Страница: