Макс Планк
Немецкий физик Макс Карл Эрнст Людвиг Планк родился в 1858 году в г. Киле (тогда Пруссия), в семье профессора гражданского права Иоганна Юлиуса Вильгельма фон Планка, профессора гражданского права, и Эммы (в девичестве Патциг) Планк. В детстве мальчик учился играть на фортепьяно и органе, обнаруживая незаурядные музыкальные способности. В 1867 г. семья переехала в Мюнхен, и там Планк поступил в Королевскую Максимилиановскую классическую гимназию, где превосходный преподаватель математики впервые пробудил в нем интерес к естественным и точным наукам. По окончании гимназии в 1874 году он собирался было изучать классическую филологию, пробовал свои силы в музыкальной композиции, но потом отдал предпочтение физике.
В течение трех лет Планк изучал математику и физику в Мюнхенском и год – в Берлинском университетах. Один из его профессоров в Мюнхене, физик-экспериментатор Филипп фон Жолли, оказался плохим пророком, когда посоветовал молодому Планку избрать другую профессию, так как, по его словам, в физике не осталось ничего принципиально нового, что можно было бы открыть. Эта точка зрения, широко распространенная в то время, возникла под влиянием необычайных успехов, которых ученые в XIX в. достигли в приумножении наших знаний о физических и химических процессах. В бытность свою в Берлине Планк приобрел более широкий взгляд на физику благодаря публикациям выдающихся физиков: Германа фон Гельмгольца и Густава Кирхгофа, а также статьям Рудольфа Клаузиуса. Знакомство с их трудами способствовало тому, что научные интересы Планка надолго сосредоточивались на термодинамике – области физики, в которой на основе небольшого числа фундаментальных законов изучаются явления теплоты, механической энергии и преобразования энергии.
Ученую степень доктора Макс Планк получил в 1879 г., защитив в Мюнхенском университете диссертацию о втором начале термодинамики, утверждающем, что ни один непрерывный самоподдерживающийся процесс не может переносить тепло от более холодного тела к более теплому.
На следующий год Планк написал еще одну работу по термодинамике, которая принесла ему должность младшего ассистента физического факультета Мюнхенского университета. В 1885 г. он стал адъюнкт-профессором Кильского университета, что упрочило его независимость, укрепило финансовое положение и предоставило больше времени для научных исследований.
Работы Планка по термодинамике и ее приложениям к физической химии и электрохимии снискали ему международное признание. В 1888 г. он стал адъюнкт-профессором Берлинского университета и директором Института теоретической физики (пост директора был создан специально для него). Полным (действительным) профессором он стал в 1892 году.
С 1896 г. Макс Планк заинтересовался измерениями, производившимися в Государственном физико-техническом институте в Берлине, а также проблемами теплового излучения тел. Любое тело, содержащее тепло, испускает электромагнитное излучение. Если тело достаточно горячее, то это излучение становится видимым. При повышении температуры тело сначала раскаляется докрасна, затем становится оранжево-желтым и, наконец, белым. Излучение испускает смесь частот (в видимом диапазоне частота излучения соответствует цвету). Однако излучение тела зависит не только от температуры, но и до некоторой степени от таких характеристик поверхности, как цвет и структура. В качестве идеального эталона для измерения и теоретических исследований физики приняли воображаемое абсолютное черное тело. По определению, абсолютно черным называется тело, которое поглощает все падающее на него излучение и ничего не отражает. Излучение, испускаемое абсолютно черным телом, зависит только от его температуры. Хотя такого идеального тела не существует, неким приближением к нему может служить замкнутая оболочка с небольшим отверстием (например, надлежащим образом сконструированная печь, стенки и содержимое которой находятся в равновесии при одной и той же температуре). Одно из доказательств чернотельных характеристик такой оболочки сводится к следующему. Излучение, падающее на отверстие, попадает в полость и, отражаясь от стенок, частично отражается и частично поглощается. Поскольку вероятность того, что излучение в результате многочисленных отражений выйдет через отверстие наружу, очень мала, оно практически полностью поглощается. Излучение, берущее начало в полости и выходящее из отверстия, принято считать эквивалентным излучению, испускаемому площадкой размером с отверстие на поверхности абсолютно черного тела при температуре полости и оболочки. Подготавливая собственные исследования, Планк прочитал работу Кирхгофа о свойствах такой оболочки с отверстием. Точное количественное описание наблюдаемого распределения энергии излучения в этом случае получило название проблемы черного тела.
Как показали эксперименты с черным телом, график зависимости энергии (яркости) от частоты или длины волны является характеристической кривой. При низких частотах (больших длинах волн) она прижимается к оси частот, затем на некоторой промежуточной частоте достигает максимума (пик с округлой вершиной), а затем при более высоких частотах (коротких длинах волн) спадает. При повышении температуры кривая сохраняет свою форму, но сдвигается в сторону более высоких частот. Были установлены эмпирические соотношения между температурой и частотой пика на кривой излучения черного тела (закон смещения Вина, названный так в честь Вильгельма Вина) и между температурой и всей излученной энергией (закон Стефана – Больцмана, названный так в честь австрийских физиков Йозефа Стефана и Людвига Больцмана), но никому не удавалось вывести кривую излучения черного тела из основных принципов, известных в то время. Вину удалось получить полуэмпирическую формулу, которую можно подогнать так, что она хорошо описывает кривую при высоких частотах, но неверно передает ее ход при низких частотах. Джордж У. Стретт (лорд Рэлей) и английский физик Джеймс Джинс применили принцип равного распределения энергии по частотам колебаний осцилляторов, заключенных в пространстве черного тела, и пришли к другой формуле (формуле Рэлея – Джинса). Она хорошо воспроизводила кривую излучения черного тела при низких частотах, но расходилась с ней на высоких частотах.
Макс Планк под влиянием теории электромагнитной природы света Джеймса Клерка Максвелла (опубликованной в 1873 г. и подтвержденной экспериментально Генрихом Герцем в 1887 г.) подошел к проблеме черного тела с точки зрения распределения энергии между элементарными электрическими осцилляторами, физическая форма которых никак не конкретизируется. Хотя на первый взгляд может показаться, что выбранный им метод напоминает вывод Рэлея – Джинса, Планк отверг некоторые из принятых этими учеными допущений. В 1900 г., после продолжительных и настойчивых попыток создать теорию, которая удовлетворительно объясняла бы экспериментальные данные, Планку удалось вывести формулу, которая, как обнаружили физики-экспериментаторы из Государственного физико-технического института, согласовывалась с результатами измерений с замечательной точностью. Законы Вина и Стефана – Больцмана также следовали из формулы Планка. Однако для вывода своей формулы ему пришлось ввести радикальное понятие, идущее вразрез со всеми установленными принципами. Энергия планковских осцилляторов изменяется не непрерывно, как следовало бы из традиционной физики, а может принимать только дискретные значения, увеличивающиеся (или уменьшающиеся) конечными шагами. Каждый шаг по энергии равен некоторой постоянной (называемой ныне постоянной Планка), умноженной на частоту. Дискретные порции энергии впоследствии получили название квантов. Введенная Планком гипотеза ознаменовала рождение квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает «физика до Планка».