Проблемы управления термоядерным синтезом
Рефераты >> Физика >> Проблемы управления термоядерным синтезом

Еще пример из недавнего прошлого. Многим хорошо запомнилось сенсационное сообщение о "холодном термояде". Однако достаточно быстро выяснилось, что обнаруженный М. Флейшманом и С. Понсом и независимо от них С. Джоунсом эффект очень слаб и не может быть использован для получения энергии. Наиболее вероятное объяснение обнаруженного эффекта - так называемая "ускорительная модель": реакция синтеза происходит в результате ускорения дейтронов сильным электрическим полем, возникающим при растрескивании палладия. Опять ускоренные дейтроны!

Первая реакция ядерного синтеза была проведена путем бомбардировки ядер азота быстрыми a-частицами. Ядра же трансурановых элементов получали путем бомбардировки ядер известных элементов ускоренными частицами.

Путь проведения ядерных реакций на ускорителях совершенно естественен и ни у кого не вызывает сомнений. Уровень энергий ускоренных протонов измеряется уже сотнями гигаэлектронвольт. Для такой техники реакция синтеза дейтерий - тритий или дейтерий - дейтерий с энергией кулоновского барьера 10 кэВ никакой сложности не представляет. Тем не менее возможность осуществления реакции ядерного синтеза путем использования столкновений ускоренных ядер дейтерия и трития до сих пор не исследовалась. И для этого есть весьма существенные основания.

Дело в том, что главная цель термоядерных исследований - получение интенсивной реакции с выделением большого количества энергии, а в ускорителях ядерные реакции происходят практически поштучно. Здесь главное не количество актов реакции, а сам факт ее прохождения. Малая интенсивность ядерных реакций в ускорителях определяется тем, что количество частиц в ускоряемом пучке сравнительно невелико и соответственно их концентрация мала. Конечно, прямое использование современной ускорительной техники для решения проблемы управляемого синтеза бессмысленно. Для нее задача повышения концентрации частиц в пучке ставится, но не как основная; здесь главная задача - достичь максимальной энергии частиц.

Попробуем попытаться сформулировать задачу несколько иначе? Разработать и создать ускоритель на встречных пучках на энергию ускоряемых ионов дейтерия и трития (дейтронов, тритонов) в несколько сот килоэлектронвольт, когда реакция синтеза уже наверняка пойдет, и при плотности частиц в пучке 1014 см-3, когда ее интенсивность будет достаточно велика для практического использования. При современном развитии науки и техники такая задача может быть достаточно быстро решена на ускорителе небольших размеров. Как показывают расчеты, для получения требуемой плотности ионов величина тока в ускорителе должна составлять несколько десятков ампер. Существующие сегодня сильноточные ускорители ионов позволяют получать токи до 106 А при энергии ионов до 106 эВ. Остается задача удержания пучков с такими параметрами. Но и эта задача имеет решение. В современных ускорителях на встречных пучках время удержания измеряется часами! Можно также попытаться построить реактор, в котором столкновения пучков будут носить импульсно-периодический характер. Само столкновение пучков в этом случае будет иметь длительность порядка 10-7-10-8 секунды, и "удерживать" их потребуется только в течение этого времени. Столкновения могут повторяться с частотой 107-108 Гц, что будет означать практически непрерывное горение реакции.

Важнейшее отличие метода встречных пучков от магнитного удержания в том, что размер ускорителя не играет принципиальной роли для достижения условий синтеза. Минимальный размер экспериментальной установки будет определяться только размерами источника ионов с требуемой энергией. А они невелики: источник ионов на несколько сот килоэлектронвольт, применяемый в промышленности (например, для ионной имплантации полупроводников), занимает площадь не более 10 м2 и стоит несколько тысяч долларов. В "нулевом" эксперименте по ядерному синтезу размеры коллайдера (объема, где сталкиваются пучки) могут быть очень малы. Например, при его длине 2 см и диаметре 0,4 см ожидается выделение 25 Вт тепла, то есть удельная мощность установки оказывается 108 Вт/м3 (примерно как у двигателя внутреннего сгорания). Достижение таких параметров и будет означать физическое решение проблемы управляемого термоядерного синтеза. Получение требуемых мощностей - вопрос уже чисто технический. Рабочий объем реактора, скажем, может содержать необходимое количество коллайдеров -"термоядерных ТВЭЛов", тепловыделяющих элементов.

Подобные предложения неоднократно высказывались в научной литературе, однако до исследований, к сожалению, дело так и не дошло. Между тем они предполагают простую экспериментальную проверку, причем на небольшом и недорогом лабораторном стенде.

Многие физико-технические проблемы такого эксперимента уже решены. Оценки показывают, что затраты на проведение работ будут в 10-20 тысяч раз меньше, чем на любые другие исследования в этой области. А в случае удачи открывается возможность несравненно более простого решения проблемы управляемого термоядерного синтеза, чем это обещают все те направления, которые разрабатываются в настоящее время.

Кольцевой зал ускорителя У-70 (Протвино).

Справа примыкает канал ввода ионов (в данном случае - протонов, ионов водорода H) первичного источника (синхротрона) в ускоритель. Ускоритель-коллайдер для термоядерного синтеза может иметь гораздо меньшие размеры.  

 

Термоядерный синтез в луче лазера требует сооружения циклопических устройств.

На снимке - одна из 192 линий исследовательской установки, построенной в Ливерморской национальной лаборатории (США).  

Сверхсекретный физик Лаврентьев

Идею термоядерного синтеза предложил сержант срочной службы, Олег Александрович Лаврентьев.

В 1950 году Лаврентьев впервые в мире сформулировал задачу использования управляемого термоядерного синтеза для мирной энергетики и разработал конструкцию первого реактора. Тогда 24-летний Лаврентьев предложил и оригинальную конструкцию водородной бомбы.

Родился Олег Лаврентьев в 1926 году в Пскове. Прочитав в 7-м классе книгу "Введение в ядерную физику", он загорелся мечтой работать в области ядерной энергетики. Но началась война, оккупация, а когда немцев прогнали, Олег пошел добровольцем на фронт. Победу юноша встретил в Прибалтике, однако учебу опять пришлось отложить - нужно было продолжить срочную службу на Сахалине, в небольшом городке Поронайске.

Здесь он вернулся к ядерной физике. В части была библиотека с технической литературой и вузовскими учебниками, да еще Олег на свое сержантское денежное довольствие подписался на журнал "Успехи физических наук". Идея водородной бомбы и управляемого термоядерного синтеза впервые зародилась у него в 1948 году, когда командование части, отличавшее способного сержанта, поручило ему подготовить лекцию по атомной проблеме.


Страница: