Индикаторы
Рефераты >> Физика >> Индикаторы

Исторически первым электрооптическим эффектом, использованным в индикаторной технике, стал эффект динамического рассеяния. Если к слою слегка проводящего нематического ЖК с отрицательной диэлектрической анизотропией приложить электрическое поле, то молекулы ориентируются поперек поля, а возникающий поток ионов стремится ларушить эту ориентацию.

При некотором значении тока проводимости возникает состояние турбулентности, разрушающее ранее упо-рядоченную структуру ЖК. Беспрерывные хаотические изменения показателя преломления участков жидкости вызывают рассеяние света (отсюда и название эффекта), внешне проявляющееся как помутнение ЖК. Вольт-контрастная характеристика ЖКИ представлена на рис. 3.7.

Лучшие характеристики индикаторов дает использо-

вание твист-эффекта, суть которого заключается в сле-

дующем. В зазоре между двумя пластинами тем или

иным способом достигают «скручивания» номатической

структуры ЖК, т. е. такого расположения молекул, когда

их большие оси параллельны ограничивающим по-

верхностям, а направления этих осей вблизи одной и

другой пластин взаимно перпендикулярны (рис. 3.8,а).

В толще жидкости ориентация молекул меняется

постепенно от верхней граничной ориентации к

нижней. Технологически такая скрученная струк-

тура достигается, например, путем однонаправ-

ленного натирания внутренних поверхностей

стеклянных пластин во взаимно перпендикуляр-

ных направлениях, что и ведет к соответствующей

ориентации молекул.

Слой скрученного нематического ЖК вращает плоскость поляризации проходящего света на п/2. Если к ячейке приложить электрическое поле, то (при условии использования материалов с положительной диэлектрической анизотропией) все молекулы ориентируются вдоль поля (рис. 3.8,6) и эффект скручивания пропадает. Теперь слой жидкости не изменяет поляризации проходящего через него света. Помещая на входе и выходе ячейки поляроидные пластины, преобразуют модуляцию поляризации света в амплитудную.

Твист-эффект в отличие от эффекта динамического рассеяния является чисто полевым: для его реализации пропускание тока через структуру не нужно. Это дает существенный выигрыш в энергопотреблении.

Устройство жидкокристаллического индикатора (рис. 3.9) достаточно просто, здесь удобно реализуюгся современные плоские панельные конструкции. Для получения низких управляющих напряжений (единицы вольт) зазор между пластинами должен быть небольшим (~10-3 см), а используемая жидкость должна

иметь круто нарастающую вольт-контрастную характеристику (рис. 3.7). Характерно, что стоимость ЖКИ (в отличие от полупроводниковых) очень мало зависит от их площади — изготавливаются приборы с высотой цифр от 3 до 500 мм. Используются конструкции, работающие как в отраженном свете (большинство типов), так и в проходящем. Все ЖКИ работают на переменном токе; при попытках использовать постоянное управляющее напряжение оказываются существенными электролитические эффекты и срок службы прибора становится недопустимо малым.

Жидкие кристаллы представляют собой достаточно удобную основу для создания информационных табло повышенной информационной емкости и экранов мало-кадрового телевидения. Причины этого—малая потреб-ляемая мощность, высокая контрастность, низкое питающее напряжение, технологичность. Основные сложности связаны со схемами управления:

низкое быстродействие

ЖКИ затрудняет использование мулыиплексных режи-

мов, приводит к созданию ЖК матриц с большим коли-

чеством внешних выводов. Перспективы преодоления

этой проблемы видятся в разработке конструкции экра-

на, в которой вместо одной из стеклянных обкладок

обычного ЖКИ используется кремниевая пластина,

содержащая схему управления и имеющая на своей

поверхности матрицу элементарных электродов.

Каждый из этих электродов является оптическим

отражателем. Такое технологическое совмещение растра

и схемы управления резко сокращает число внешних

выводов.

Совершенствование ЖКИ ведется в направлении получения цветных изображений (для этого привлекаются иные, отличные от описанных, электрооптические эффекты), повышения быстродействия, долговечности (значения, близкие к 105 ч, представляются вполне реальными), создания злементов с встроенной памятью.

3.3 Газоразрядные индикаторы (ГРИ) являются примером того, как влияние конструкторско-технологических идей микроэлектроники заново преобразует «старую» традиционную область техники.

Основу любого прибора этого класса составляет элементарный газоразрядный промежуток (рис. 3.10). За-жигание и поддержание разряда требует высокого напряжения (Uзаж≈80 . 400 В, Uгор≈50 . 300 В), ток близок к 1 мА. Заполнение рабочего объема неоном дает оранжевое свечение, а гелием и аргоном — желтое и фиолетовое. Возможно и непрямое преобразование энергии: разряд в ксеноне (УФ излучение) в сочетании с фотолюминофорами желаемого цвета свечения. Инерционность газового разряда определяется в основном временами его гашения (10-7 . 10-8 с) и исчезновения плазмы (10-6 . 10-4 с).

Используются два основных режима работы. В режиме постоянного тока обязателен балластный резистор,

необходим и элемент гашения разряда. Взаимодействие газа с электродами (рис. 3.10,а) сопровождается катодным распылением, особенно интенсивным при минусовых температурах. Значительно перспективнее высокочастотный разряд, для которого характерны самоограничение и отсутствие непосредственного кон-такта газа с электродами (рис. 3.10,6).

Среди газоразрядных индикаторов выделяют: знаковые, шкальные и универсальные (плазменные

панели). На смену громоздкой пакетной конструкции газоразрядной лампы с десятью изолированными катодами, высвечивающими отдельные цифры, пришел многоразрядный монодисплей панельного типа, один из вариантов которого представлен на рис. 3.11. Его характерные особенности: плоскостность, малая толщина (несколько миллиметров), простота конструкции (всего четыре детали) и технологии. Две плоские электродные решетки из ковара, получаемые штамповкой или травлением, закрепляются на отдельных стеклянных пластинах, после чего части собранного пакета соединяются в горячем состоянии. Затем пакет вакуумируется, заполняется газовой смесью и герметизируется. Кроме катодных линейных элементов, формирующих изображение, электродные решетки содержат и внешние выводы.

Имеется много разновидностей сегментных ГРИ, но все они однотипны с описанным прибором. Типичные значения высоты знаков составляют 5 . 16 мм, число разрядов 3 . 9. Для питания необходимо напряжение постоянного тока 170 . 200 В.

Универсальный индикалэр или плазменная панель представляют собой двухкоординатную матрицу, содер-жащую не менее 104 . 105 элементарных газоразряд-


Страница: