Нейтронные звёзды
ВСПЫШКА
Колоссальная рентгеновская вспышка 5 марта 1979 года, оказывается, произошла далеко за пределами нашей Галактики, в Большом Магеллановом Облаке — спутнике нашего Млечного Пути, находящемся на расстоянии 180 тыс. световых лет от Земли. Совместная обработка гаммавсплеска 5 марта, зафиксированного семью космическими кораблями, позволила достаточно точно определить положение данного объекта, и то, что он находится именно в Магеллановом Облаке, сегодня практически не вызывает сомнений. Событие, случившееся на данной далекой звезде 180 тыс. лет назад, трудно представить, но вспыхнула она тогда, как целых 10 сверхновых звезд, более чем в 10 раз превысив светимость всех звезд нашей Галактики. Яркая точка в верхней части рисунка — это давно и хорошо известный SGR-пульсар, а неправильный контур — наиболее вероятное положение объекта, вспыхнувшего 5 марта 1979 года.
ПРОИСХОЖДЕНИЕ НЕЙТРОННОЙ ЗВЕЗДЫ
Вспышка сверхновой звезды — это просто переход части гравитационной энергии в тепловую. Когда в старой звезде заканчивается топливо и термоядерная реакция уже не может разогреть ее недра до нужной температуры, происходит как бы обрушение — коллапс газового облака на его центр тяжести. Высвобождающаяся при этом энергия разбрасывает внешние слои звезды во все стороны, образуя расширяющуюся туманность. Если звезда маленькая, типа нашего Солнца, то происходит вспышка и образуется белый карлик. Если масса светила более чем в 10 раз превышает Солнечную, то такое обрушение приводит к вспышке сверхновой звезды и образуется обычная нейтронная звезда. Если же сверхновая вспыхивает на месте совсем большой звезды, с массой 20—40 Солнечных, и образуется нейтронная звезда с массой большей трех Солнц, то процесс гравитационного сжатия приобретает необратимый характер и образуется черная дыра.
ВНУТРЕННЯЯ СТРУКТУРА
Твердая корка внешних слоев нейтронной звезды состоит из тяжелых атомных ядер, упорядоченных в кубическую решетку, с электронами, свободно летающими между ними, чем напоминает земные металлы, но только намного более плотные.
ОТКРЫТЫЙ ВОПРОС
Хотя нейтронные звезды интенсивно изучаются уже около трех десятилетий, их внутренняя структура доподлинно неизвестна. Более того, нет твердой уверенности и в том, что они действительно состоят в основном из нейтронов. С продвижением вглубь звезды давление и плотность увеличиваются и материя может быть настолько сжата, что она распадется на кварки — строительные блоки протонов и нейтронов. Согласно современной квантовой хромодинамике кварки не могут существовать в свободном состоянии, а объединяются в неразлучные «тройки» и «двойки». Но, возможно, у границы внутреннего ядра нейтронной звезды ситуация меняется и кварки вырываются из своего заточения. Чтобы глубже понять природу нейтронной звезды и экзотической кварковой материи, астрономам необходимо определить соотношение между массой звезды и ее радиусом (средняя плотность). Исследуя нейтронные звезды со спутниками, можно достаточно точно измерить их массу, но определить диаметр — намного труднее. Совсем недавно ученые, используя возможности рентгеновского спутника «XMM-Ньютон», нашли способ оценки плотности нейтронных звезд, основанный на гравитационном красном смещении. Необычность нейтронных звезд состоит еще и в том, что при уменьшении массы звезды ее радиус возрастает — в результате наименьший размер имеют наиболее массивные нейтронные звезды.
ЧЕРНАЯ ВДОВА
Взрыв сверхновой звезды достаточно часто сообщает новорожденному пульсару немалую скорость. Такая летящая звезда с приличным собственным магнитным полем сильно возмущает ионизированный газ, заполняющий межзвездное пространство. Образуется своеобразная ударная волна, бегущая впереди звезды и расходящаяся широким конусом после нее. Совмещенное оптическое (сине-зеленая часть) и рентгеновское (оттенки красного) изображение показывает, что здесь мы имеем дело не просто со светящимся газовым облаком, а с огромным потоком элементарных частиц, испускаемых данным миллисекундным пульсаром. Линейная скорость Черной Вдовы равна 1 млн. км/ч, оборот вокруг оси она делает за 1,6 мс, лет ей уже около миллиарда, и у нее есть звезда-компаньон, кружащаяся около Вдовы с периодом 9,2 часа. Свое название пульсар B1957+20 получил по той простой причине, что его мощнейшее излучение просто сжигает соседа, заставляя «кипеть» и испаряться образующий его газ. Красный сигарообразный кокон позади пульсара — это та часть пространства, где испускаемые нейтронной звездой электроны и протоны излучают мягкие гамма-кванты.
Результат компьютерного моделирования позволяет очень наглядно, в разрезе, представить процессы, происходящие вблизи быстро летящего пульсара. Расходящиеся от яркой точки лучи — это условное изображение того потока лучистой энергии, а также потока частиц и античастиц, который исходит от нейтронной звезды. Красная обводка на границе черного пространства вокруг нейтронной звезды и рыжих светящихся клубов плазмы — это то место, где поток релятивистских, летящих почти со скоростью света, частиц встречается с уплотненным ударной волной межзвездным газом. Резко тормозя, частицы испускают рентгеновское излучение и, потеряв основную энергию, уже не так сильно разогревают налетающий газ.
СУДОРОГИ ГИГАНТОВ
Пульсары считаются одной из ранних стадий жизни нейтронной звезды. Благодаря их изучению ученые узнали и о магнитных полях, и о скорости вращения, и о дальнейшей судьбе нейтронных звезд. Постоянно наблюдая за поведением пульсара, можно точно установить: сколько энергии он теряет, насколько замедляется, и даже то, когда он прекратит свое существование, замедлившись настолько, что не сможет излучать мощные радиоволны. Эти исследования подтвердили многие теоретические предсказания относительно нейтронных звезд.
Уже к 1968 году были обнаружены пульсары с периодом вращения от 0,033 секунды до 2 секунд. Периодичность импульсов радиопульсара выдерживается с удивительной точностью, и поначалу стабильность этих сигналов была выше земных атомных часов. И все же по мере прогресса в области измерения времени для многих пульсаров удалось зарегистрировать регулярные изменения их периодов. Конечно, это исключительно малые изменения, и только за миллионы лет можно ожидать увеличения периода вдвое. Отношение текущей скорости вращения к замедлению вращения — один из способов оценки возраста пульсара. Несмотря на поразительную стабильность радиосигнала, некоторые пульсары иногда испытывают так называемые «нарушения». За очень короткий интервал времени (менее 2 минут) скорость вращения пульсара увеличивается на существенную величину, а затем через некоторое время возвращается к той величине, которая была до «нарушения». Полагают, что «нарушения» могут быть вызваны перегруппировкой массы в пределах нейтронной звезды. Но в любом случае точный механизм пока неизвестен. Так, пульсар Вела примерно раз в 3 года подвергается большим «нарушениям», и это делает его очень интересным объектом для изучения подобных явлений.
