Энергия
Рефераты >> Физика >> Энергия

Пассивные системы составляют интегральную часть самого здания, которое должно проектироваться таким образом, чтобы обеспечивать наиболее эффективное использование солнечной энергии для отопления. Наряду с окнами и остекленными поверхностями южного фасада для улавливания солнечного излучения также используются остекленные проемы в крыше и дополнительные окна в верхней части здания, которые повышают уровень комфорта человека, так как исключают прямое попадание солнечных лучей в лицо. Одно из важнейших условий эффективности работы пассивной гелиосистемы заключается в правильном выборе местоположения и ориентации здания на основе критерия максимального поступления и улавливания солнечного излучения в зимние месяцы.

Прямое улавливание солнечной энергии может эффективно осуществляться при соблюдении следующих условий:

1) оптимальная ориентация дома - вдоль оси восток-запад или с отклонением до 30о от этой оси;

2) на южной стороне 50-70 % всех окон, а на северной - не более 10%, причем южные окна должны иметь двухслойное остекление, а северные окна - трехслойное;

3) здание должно иметь улучшенную тепловую изоляцию и низкие теплопотери вследствие инфильтрации наружного воздуха;

4) внутренняя планировка здания должна обеспечивать расположение жилых комнат с этой стороны, а вспомогательных помещений - с северной;

5) должна быть обеспечена достаточная теплоаккумулирующая способность внутренних стен и пола для поглощения и аккумулирования теплоты солнечной энергии;

6) для предотвращения перегрева помещений в летний период над окнами должны быть предусмотрены навесы, козырьки и т.п.

КПД такой системы отопления, как правило составляет 25-30 %, но в особо благоприятных климатических условиях может быть значительно выше и достигать 60 %. Существенным недостатком этой системы являются большие суточные колебания температуры воздуха внутри помещений. Пассивные системы имеют такой же срок службы, как и само здание. Наряду с получением теплоты эти системы также обеспечивают эффективное использование дневного освещения, благодаря чему снижается потребление электроэнергии.

Активные гелиосистемы отопления зданий

В состав активной системы солнечного отопления входят коллектор солнечной энергии, аккумулятор теплоты, дополнительный (резервный) источник энергии, теплообменники для передачи теплоты из КСЭ в аккумулятор и из него к потребителям, насосы или вентиляторы, трубопроводы с арматурой и комплекс устройств для автоматического управления работой системы. Солнечный коллектор обычно устанавливается на крыше дома, остальное оборудование гелиосистемы отопления и горячего водоснабжения дома размещается в подвале. Там устанавливаются основной аккумулятор теплоты, теплообменник для подогрева воды, бак для аккумулирования горячей воды, теплообменник для нагрева воздуха для отопления дома, расширительный бак и теплообменник для передачи теплоты от антифриза к воде. Снаружи дома находится теплообменник, предназначенный для сброса избыточного количества уловленной солнечной теплоты в летний период.

Сравнение активных и пассивных гелиосистем дает возможность выявить их преимущества и недостатки. Преимущества активных гелиосистем связаны с легкостью и гибкостью интегрирования систем со зданием, возможностью автоматического управления работой системы и снижением тепловых потерь. Однако при применении активных гелиосистем часто возникают проблемы, обусловленные недостаточной надежностью оборудования, в том числе систем автоматического управления. В отличии от них пассивные системы просты, надежны в работе и недороги, но они также имеют недостатки. прежде всего возникают трудности с поддержанием температурного режима, необходимого для обеспечения теплового комфорта в отапливаемых помещениях. В гибридных системах можно соединить достоинства активных и пассивных элементов и устранить многие недостатки, повысив тем самым эффективность систем при умеренных капиталовложениях.

Электроэнергия из космоса

Идея сооружения Международной опытной космической электростанции (КСЭС), подающей электроэнергию земным потребителям, возникла в 1960 году и не сходит с тех пор со страниц популярных и научных изданий.

КСЭС в совокупности с промежуточными атмосферными сооружениями сможет на только подавать электроэнергию земным потребителям, но и непосредственно освещать большие участки земной поверхности ночью и затенять их днем, регулировать климатические условия, уничтожать тайфуны и смерчи, снабжать энергией космические корабли, воздушные средства, наземный транспорт, удаленные от линий электропередачи промышленные предприятия и т.д.

Целесообразность создания КСЭС диктуется неисчерпаемостью солнечной энергии, экологическими соображениями и необходимостью сохранять ныне широко применяемые природные энергоносители (нефть, газ, уголь) для нужд химической промышленности.

КСЭС с периодически сменяемым персоналом могла бы стать на только прообразом сверхмощных станций будущего, но и одновременно выполнять огромное количество обычной “космической работы” (исследования, наблюдения, эксперименты) Потребность в такой опытной КСЭС имеется уже сейчас, причем не только потребность, но и возможность ее создания при условии международного сотрудничества.

При этом следует учесть, что наша страна первой в мире освоила пилотируемые космические полеты с пребыванием людей на станции в течение одного года, у нас создан и опробован в космосе уникальный монтажный инструмент, а космонавтами получен уникальный опыт работы по развертыванию крупногабаритных космических сооружений, в том числе и дополнительных панелей солнечных батарей, освоены длительные рабочие выходы космонавтов в открытый космос, успешно проведены первые испытания новой универсальной ракеты-носителя “Энергия”, способной выводить на околоземную орбиту более 100 т полезного груза.

Практическое использование солнечной энергии в космонавтике началось в 1958 году на первом ИСЗ США и на третьем советском ИСЗ. Эти спутники, как известно, имели солнечные батареи.

Первая публикация по проблеме КСЭС с изложением технической сущности принадлежит американскому инженеру П. Гейзеру. В его проекте масса КСЭС достигает 30 тыс.т, размер (“размах”) солнечных батарей 60 км, а электрическая мощность - примерно 8,5 ГВт. Таким образом, мощность спроектированной станции выше мощности эксплуатируемых ныне крупнейших электростанций мира: ГЭС “Гленд-Кули” (США) - 6,2 ГВт, Красноярской ГЭС - 6 ГВт, АЭС “Фукушима”- 4,7 ГВт, ТЭС “Кашима”- 4,4 ГВт (Япония).

Целесообразность создания КСЭС и КТЭС диктуется неисчерпаемостью как солнечной энергии, так и горючего для КТЭС- космического водорода, экологическими соображениями и необходимостью сохранить ныне широко применяемые природные химические энергоресурсы для нужд химической промышленности.

Всвязи с печальным опытом аварии на Чернобыльской АЭС возникает вопрос, а не грозит ли создание КСЭС какими-либо новыми бедами людям, ведь передача энергии будет происходить через атмосферу, а следовательно, воздействовать на ее состав и динамику. Будет ли это воздействие положительным? Расчеты вселяют оптимизм, но окончательный ответ может дать только опытная эксплуатация электропередачи Космос-Земля.


Страница: