Физика нейтрино
Рефераты >> Физика >> Физика нейтрино

Если рассмотреть хорошо защищенный столитровый сцинтилляционный детектор, расположенный в потоке нейтрино 1013 /см2*с, то число рассеяний нейтрино на электроне составит в нем пять штук за час. А фон в области, где лежит основное число электронов, т.е. от 0,2 до 1,5 МэВ, будет в 100 000 раз больше. Такова количественная оценка трудностей, стоящих перед экспериментаторами.

Райнес предложил следующее. Он считал, что лучше всего использовать для регистрации органический сцинтиллятор, который будет одновременно служить и детектором, и мишенью. Тогда фон будет обусловлен -лучами из окружающей среды, а не внутренними загрязнениями. Разделение эффекта и фона может быть основано на различии между сигналом от -квантов и сигналом от электронов отдачи, созданных антинейтрино.

Рис. 2. Схема установки для обнаружения рассеяния нейтрино на электроне

Точнее на различии их пробегов в веществе. Схема центральной части установки, собственно сам детектор нейтрино, изображен на рис.2.

Пластический сцинтиллятор разделен на светоизолированные секции. Свет от каждой их них через светопровод из иодистого натрия и обычный светопровод попадает на фотоумножитель. Нейтринное событие - это сцинтилляционная вспышка в одной, и только одной, секции, поскольку

пробег электрона с энергией в несколько МэВ, с большой вероятностью целиком укладывается в пластическом сцинтилляторе.

Когда в установку попадает - квант, то он, скорее всего, регистрируется в активной защите из иодистого натрия, который со всех сторон толстым слоем окружает пластик. Понятно, что когда это происходит в боковых охранных кристаллах, то система регистрирует его как фоновый импульс. А если сцинтилляция возникает в одном из светопроводов, то как отличить ее от импульса, вызванного нейтрино? Тогда используется тот факт, что световые импульсы от NaI и от пластического сцинтиллятора по характеру своего спада и нарастания во времени различны. Специальная электронная схема разделяет их и считает первый как фон.

Наконец, если -квант проивзоимодействовал в самом пластике, то с большой вероятностью это произойдет путем комптон - эффекта. Тогда рас- сеяный квант еще раз зарегистрируется в детекторе. А любые двойные события считаются связанными с фоном.

Детектор был окружен пассивной защитой - свинцом и кадмием (для поглощения нейтронов). Внешняя активная защита представляла собой бак, содержащий более двух тон жидкого сцинтиллятора, в который и опускалась вас установка. Все эти меры позволили в десятки раз уменьшить фон и обнаружить эффект.

При включенном реакторе счет одиночных событий составил 47 собы- тий/сутки, при выключенном - 40. Разность между ними 7 событий/сутки - нейтринные события. Можно было считать доказанным существование этого процесса. Наблюдение рассеяния нейтрино на электроне - одно из самых высших достижений сцинтилляционной техники и техники регистрации малых активностей.

3. НЕЙТРИНО И АНТИНЕЙТРИНО.

В 1928 г. Поль Дирак вывел свое знаменитое уравнение. Оно не только описывало поведение элементарных частиц со спином /2 (фермионов), но и предсказывало, что у каждой такой частицы есть своя античастица.

Последняя должна иметь туже массу и спин, что и частица, но отличатся от нее знаком заряда и магнитного момента (если у частицы магнитный момент направлен по спину, то у античастицы - против).

Первая античастица - позитрон, была открыта в 1932 г. Затем, более чем через 20 лет, были открыты антипротон и антинейтрон. Дальнейшее продвижение в антимир шло более быстрыми темпами.

Нейтрино оказалось некоей двойственной частицей. С одной стороны, оно относится к семейству фермионов и должно описываться уравнением Дирака. С другой стороны, отсутствие заряда и магнитного момента делает непонятным отличие частицы от античастицы.

Теорию, описывающую электрически нейтральные фермионы как истинно нейтральные, не имеющие античастиц, создал в 1937 году итальянский физик Э. Майорана. Вопрос же разные ли частицы излучаются при +- распаде (электронном захвате) ядра p n + e+ + (нейтрино) и при -- распаде n p + e- + (антинейтрино) или идентично - , предстояло решить экспериментаторам.

Метод исследования был найден Бруно Максимовичем Понтекорво. Как уже упоминалось, еще в 1946 г. он размышлял над возможностью регист- рации нейтрино от ядерного реактора.

" В то время сцинтилляторы, которые много лет спустя были так успешно использованы Рейнесом и Коуэном для детектирования реакторных антинейтрино, еще не были созданы, и мне пришло в голову, что проблема может быть решена радиохимическими методами, т.е. путем химической концентрации изотопа, образующегося при обратном - процессе из очень большой массы вещества, облучаемого нейтрино. При внимательном осмотре знаменитой таблицы искусственных изотопов Сиборга нашлось несколько возможных кандидатов на мишень, среди которых наиболее подходящими оказались соединения хлора. Соответствующая реакция выглядит следующим образом:

нейтрино + 37Cl 37Ar + e-, (5)

где 37Ar распадается путем электронного захвата.…

Я написал здесь "нейтрино", а не , потому, что вопрос о том, отличается ли от , был еще не ясен".

Позднее именно процесс (5) был использован для доказательства отличия от .

Реакция прямого процесса - электронного захвата имеет вид:

37Ar + e- 37Cl + ,


Страница: