Картина мира и развитие взглядов на неё
Рефераты >> Физика >> Картина мира и развитие взглядов на неё

Все спонтанные процессы невозвратимы. Это позволяет говорить о глобальном увеличении энтропии вселенной, т.е. общее количество работы, доступной для совершения работы, уменьшается.

Фундаментальные взаимодействия

В физике к фундаментальным взаимодействиям относят 4 основные силы: гравитации, электромагнитную, слабую и сильную. Гравитация и электромагнетизм были обнаружены заметно раньше благодаря тому, что их воздействие на обычные предметы легко обнаруживается. Силы гравитации действуют между всеми объектами, обладающими массой. Электромагнитные силы действуют между заряженными телами, объясняют химическое поведение атомов и свойства света. Слабое и сильное взаимодействия были обнаружены физиками лишь в 20м веке. Сильное взаимодействие связывает протоны и нейтроны внутри ядра, несмотря на электромагнитное отталкивание протонов друг от друга. Наконец, слабое взаимодействие проявляет себя в некоторых видах радиоактивного распада и в реакциях между легчайшими субатомными частицами. Мощнейшими силами в природе считаются сильные. За ними идут электромагнитные, слабые и гравитационные. Различаются они также тем, что электромагнитные и гравитационные силы действуют на бесконечно большом расстоянии, тогда как радиус действия слабых и сильных сил строго ограничен.

Многие годы ученые стремились показать, что эти четыре силы - лишь различные проявления некой фундаментальной силы. Самым удачным шагом на пути к такой унификации стало появление электрослабой теории. Эта теория объединила электромагнитные и слабые силы на основе квантовой электродинамики. В квантовой электродинамике заряженные частицы взаимодействуют, испуская и поглощая при этом фотоны. Здесь отражена и связь между материей и полем. Не только фотоны, но и другие частицы обладают волновыми свойствами. Таким образом, на субатомном уровне грань между полем и материей сильно размыта. В 1970х была сформулирована теория и для сильного взаимодействия, которая по структуре схожа с квантовой электродинамикой (квантовая хромодинамика). Однако, несмотря на все исследования, ни одной теории не удалось пока объединить все четыре основные силы.

Принцип неопределённости

Принцип неопределённостифундаментальное положение квантовой теории, утверждающее, что любая физическая система не может находиться в состояниях, в которых координаты её центра инерции и импульс одновременно принимают вполне определённые, точные значения.

Из принципа неопределённости следует, что чем точнее определена одна из входящих в неравенство величин, тем менее определенно значение другой. Никакой эксперимент не может привести к одновременно точному измерению таких динамичных переменных; при этом неопределённость в измерениях связано не с несовершенством экспериментальной техники, а с объективными свойствами материи. Действие принципа неопределённости существенно в основном для явлений атомных (и меньших) масштабов и не проявляются в опытах с макроскопическими телами.

Принцип неопределённости, открытый в 1927 г. немецким физиком В. Гейзенбергом, явился важным этапом в выяснении закономерностей внутриатомных явлений и построении квантовой механики. Существенной чертой микроскопических объектов является их корпускулярно-волновая природа. Состояние частицы полностью определяется волновой функцией (величина, полностью описывающая состояние микрообъекта (электрона, протона, атома, молекулы) и вообще любой квантовой системы). Частица может быть обнаружена в любой точке пространства, в которой волновая функция отлична от нуля. Поэтому результаты экспериментов по определению, например, координаты имеют вероятностный характер.

Он сыграл исключительно важную роль при построении математического аппарата для описания волн частиц в атомах. Его строгое толкование в опытах с электронами такого: подобно световым волнам электроны сопротивляются любым попыткам выполнить измерения с предельной точностью. Этот принцип меняет и картину атома Бора. Можно определить точно импульс электрона (а, следовательно, и его уровень энергии) на какой-нибудь его орбите, но при этом его местонахождение будет абсолютно неизвестно: ничего нельзя сказать о том, где он находится. Отсюда ясно, что рисовать себе чёткую орбиту электрона и помечать его на ней в виде кружка лишено какого-либо смысла.

Следовательно, при проведении серии одинаковых опытов, по тому же определению координаты, в одинаковых системах получаются каждый раз разные результаты. Однако некоторые значения будут более вероятными, чем другие, т. е. будут появляться чаще. Относительная частота появления тех или иных значений координаты пропорционально квадрату модуля волновой функции в соответствующих точках пространства. Поэтому чаще всего будут получаться те значения координаты, которые лежат вблизи максимума волновой функции. Но некоторый разброс в значениях координаты, некоторая их неопределённость (порядка полуширины максимума) неизбежны. То же относится и к измерению импульса.

Таким образом, понятия координаты и импульса в классическом смысле не могут быть применены к микроскопическим объектам. Пользуясь этими величинами при описании микроскопической системы, необходимо внести в их интерпретацию квантовые поправки. Такой поправкой и является принцип неопределённости.

Модель и теория

Прогресс в физике, как и в других науках, обусловлен тесным взаимодействием эксперимента и теории. На первый взгляд может показаться, что в такой области физики, как классическая механика, эксперимент почти не нужен, поскольку можно использовать математическую модель. Однако эксперимент необходим в данном случае для постановки проблемы. Математик не может рассматривать условия равновесия велосипеда, пока тот не изобретён. Поскольку законы движения охватывают очень широкий спектр проблем, необходимо обычно сначала выбрать конкретный объект для рассмотрения. Современный физик-экспериментатор не сможет достичь успеха без учёта теории, хотя для этого и не обязательно быть способным полностью объяснить опыт с помощью математики. Аналогично, физик-теоретик должен представлять себе, как ведут себя реальные объекты, даже если он не в состоянии провести полноценный опыт. Единая сущность физики сводится к тому, что существование экспериментальной и теоретической физик невозможно отдельно друг от друга.

Список использованной литературы:

1. “Физика. Учебник для 11 класса средней школы” Г. Я. Мякишев, Б. Б. Буховцев; Москва “Просвещение” 1991

2. BRITANNICA .COM; © 1999 Britannica.com Inc.


Страница: