Наноэлектроника
Содержание
Введение
Принцип квантования и условия наблюдения квантовых размерных эффектов
Структуры с двумерным электронным газом
Структуры с одномерным электронным газом (квантовые нити)
Структуры с нуль-мерным электронным газом (квантовые точки)
Структуры с вертикальным переносом
Технология квантово-размерных структур
Метод молекулярно-лучевой эпитаксии
Применение квантово-размерных структур в приборах наноэлектроники
Лазеры с квантовыми ямами и точками
Фотоприемники на квантовых ямах
Квантово-точечные клеточные автоматы и беспроводная электронная логика
Использованная литература
Введение
До недавнего времени физики и инженеры электронщики в своих расчетах использовали только законы классической физики. И это было вполне оправдано, т.к., например, электроны в кинескопе движутся так же, как классические материальные точки. Таких примеров можно привести очень много. Однако ситуация меняется. Интегральные схемы становятся все более сложными и объединяют в себе все большее количество элементов, следовательно, должны уменьшаться размеры этих элементов. Эти размеры достигли долей микрона. В этот момент описание на языке классической физики теряет всякий смысл и создатели вынуждены обратиться к квантовой механике.
В классической физике электроны, как и все другие частицы, движутся по траекториям. В любом случае, задав начальную координату и импульс, можно вычислить траекторию.
В квантовой механике картина движения совершенно иная. Эта теория не описывает движение по траектории. Здесь накладывается ограничение на точность, с которой могут быть заданы начальная координата и импульс электрона. Если координата электрона известна с точностью Dx, то его импульс можно определить не точнее, чем Dp ³ h/2pDx. Это соотношение неопределенностей Гейзенберга. Из этого соотношения видно, что очень точное задание координаты электрона приводит к большой неопределенности импульса и, значит, направление, по которому будет двигаться электрон, предвидеть невозможно.
Физики уже накопили большой опыт в разработке приборов, действие которых основано на квантовомеханических принципах. Укладывая атомы с точностью до одного-двух слоев, можно создавать искусственные кристаллы, молекулы и атомы с заданными свойствами. Такие полупроводниковые структуры имеют размеры порядка нескольких нанометров. Можно выделить несколько основных типов микроструктур: квантовые ямы, нити, точки, сверхрешетки. О них в той или иной степени и пойдет речь.
Принцип квантования и условия наблюдения квантовых размерных эффектов
Как должно быть известно читателю, электрон обладает корпускулярно-волновым дуализмом. Следовательно, он может испытывать интерференцию, проникать через узкие щели и барьеры, но вместе с тем сохраняет признаки обычной частицы. Он имеет строго определенную массу и заряд. Кроме того, электрон, подобно классической частице, обладает импульсом и энергией.
Необходимо сказать о главной особенности квантовомеханического описания. Если в некоторый момент времени частица находилась в ограниченной области пространства, то в будущем невозможно достоверно предсказать ее местоположение. Можно говорить о распределении частицы в пространстве и о вероятности этого распределения. Величина, описывающая это распределение, получила название Y-функции или волновой функции. Она не описывает усредненное поведение большого числа электронов или одного электрона, заряд которого "размазан" по всему пространству, она дает вероятностное, статистическое описание отдельного электрона. Интенсивность этой функции, а точнее, ее квадрат |Y|2 определяет вероятность обнаружить частицу в той или иной области, точнее, вероятность обнаружить частицу в интервале Dx равна |Y|2Dx. Волновая функция - это основная характеристика квантовой системы. Она содержит полную информацию об электронах или других частицах в атоме, молекуле, кристалле.
Необходимо рассмотреть одно из проявлений чисто квантовой природы электрона. Известно, что волны различной физической природы, возбуждаемые в ограниченном объеме, имеют строго определенную длину волны и частоту. В том случае, когда движение электрона происходит в ограниченной области, его энергия имеет строго определенные, дискретные значения. Говорят, что спектр энергий квантован. Если электрон заперт в атоме, молекуле или любой потенциальной яме, то волновая функция Y представляет стоячую волну. Если речь идет о прямоугольной потенциальной яме, которая изображена на рисунке, то по своей форме волна будет такой же, как и в случае натянутой струны, однако, во-первых, природа волны здесь иная, а во-вторых, дискретным в этом случае будет не спектр частот, а спектр энергий. Стоячие волны, описывающие электронные состояния в яме, — это синусоиды, обращающиеся в точках x=0 и x=a в нуль. Yn(x) = (Ö(2/a))sin(pxn/a) , где n – номер квантового состояния, a – размер ямы. На данном рисунке изображены три такие функции, соответствующие n = 1, 2, 3, . Видно, что электронная плотность в яме распределяется неравномерно, есть максимумы и минимумы плотности вероятности. Также следует, что длины волн Y-функций, описывающих электронные состояния с различными n, удовлетворяют условиям ln/2 = a/n, то есть в яме укладывается целое число полуволн.
Для наблюдения квантовых размерных эффектов расстояние между энергетическими уровнями должно быть достаточно велико. В первую очередь оно должно значительно превосходить тепловую энергию носителей: En+1 – En >> kT, иначе наблюдение эффектов будет невозможным. Если электронный газ вырожден и характеризуется энергией Ферми V, то желательно также выполнение условия En+1 – En ³ V, при этом первое условие выполняется автоматически, т.к. kT << V; иначе квантовые эффекты имеют весьма малую относительную величину. Существуют и другие условия, связанные с рассеянием носителей на примесях, фононах и др.
Структуры с двумерным электронным газом
Одним из примеров таких структур являются тонкие пленки. В такой структуре одно из направлений (z) очень мало, следовательно, энергетический спектр в этом направлении можно описать формулой En = (hn/a)2/8m, где m – эффективная масса электрона, a – толщина пленки, т.к. в данном направлении образуется потенциальная яма. В оставшихся двух направлениях электроны могу передвигаться свободно. Образованную потенциальную яму надо считать бесконечно глубокой, следовательно, En должны быть малы по сравнению с действительной глубиной ямы Ф. Данное условие приводит к толщине пленки порядка нанометров, что соответствует нескольким межатомным расстояниям. Полная энергия носителей в квантово-размерной пленке носит смешанный дискретно-непрерывный спектр: E = En +(px2 + py2)/2m, где px и py – компоненты импульса в плоскости слоя.