Майкельсон Альберт Абрахам
Рефераты >> Физика >> Майкельсон Альберт Абрахам

Тогда Т = D / (V – v), Т1 = D / (V + v).

Полное время движения туда и обратно равно

T + T1 = 2D · V / (V2 – v2),

и расстояние, пройденное за это время, равно

2D · V2 / (V2 – v2) ≈ 2D · (1 + v2/V2),

если пренебречь членами четвертого порядка.

Длина другого пути, очевидно, равна

или с той же точностью 2D · (1 + v2 / V2).

Поэтому разность равна D · v2/V2. Если теперь повернуть весь прибор на 90°, то разность будет наблюдаться в противоположном направлении; следовательно, смещение интерференционных полос должно быть 2D · v2/V2. Учитывая только орбитальное движение Земли, это должно быть равно 2D ·10–8. Если, как было в первом эксперименте, D = 2·106 длин волн желтого света, то ожидаемое смещение должно составлять 0,04 расстояния между интерференционными полосами. В первом эксперименте одна из основных встретившихся трудностей состояла в приведении прибора во вращение без создания искажений, другая же – его крайняя чувствительность к вибрациям. Она была столь велика, что при работе в городе, даже в два часа ночи, невозможно было наблюдать интерференционные полосы, кроме как в течение коротких промежутков времени. В итоге, как уже отмечалось, величина, которая должна была наблюдаться, а именно смещение, несколько меньшее, чем одна двадцатая часть расстояния между интерференционными полосами, могла быть слишком малой, чтобы быть зарегистрированной, когда она маскируется погрешностями эксперимента.

Первая из названных трудностей была полностью устранена путем установки прибора на массивный камень, плавающий в ртути; вторая же была преодолена посредством увеличения пути света вследствие повторных отражений до величины, почти в десять раз превосходившей первоначальную.

Внешний вид интерферометра

Рис. 2. Внешний вид интерферометра

Вид прибора показан на рис. 2, его вертикальное сечение – на рис. 3, а ход лучей в нем – на рис. 4. Камень а (рис. 4) имел площадь около 1,5 х 1,5 м и толщину 0,3 м. Он покоился на кольцеобразном деревянном поплавке bb с внешним диаметром 1,5 м, внутренним диаметром 0,7 м и толщиной 0,25 м. Поплавок располагался на ртути, содержавшейся в чугунном лотке cc толщиной 1,5 см и таких размеров, что вокруг поплавка в нем оставалось свободное пространство около сантиметра.

Разрез опоры интерферометра

Рис. 3. Разрез опоры интерферометра

Шпилька d, направляемая рычагами gggg, совпадает с гнездом е, проделанным в поплавке. Посредством ручки, надетой в f, она может либо вставляться в гнездо, либо выниматься из него. Эта шпилька делает поплавок соосным с лотком, но не несет ни малейшей части веса камня. Кольцеобразный чугунный лоток опирается на цементную подложку, лежащую на низком кирпичном основании, выложенном в форме полого восьмиугольника.

В каждом углу камня помещалось по четыре зеркала ddee (рис. 3). Вблизи центра камня находилась плоскопараллельная стеклянная пластинка b. Все это было расположено так, что свет от горелки Аргана5 а, проходя через линзу, падал на b таким образом, чтобы частично отражаться к d1. Два пучка, показанные на рисунке, проходили пути bdedbf и bd1e1d1bf соответственно и наблюдались в зрительную трубу f. И труба f, и горелка а вращались вместе с камнем. Зеркала были сделаны из зеркальной бронзы и тщательно обработаны до получения оптически плоских поверхностей 5 см в диаметре: стекла b и с были плоскопараллельными, одинаковой толщины 1,25 см; их поверхности имели размеры 5,0 х 7,5 см. Второе стекло ставилось на пути одного из пучков, чтобы скомпенсировать прохождение второго пучка через стекло той же толщины. Вся оптическая часть прибора содержалась под деревянным кожухом для предотвращения воздушных потоков и быстрых изменений температуры.

Ход лучей в интерферометре

Рис. 4. Ход лучей в интерферометре

Настройка проводилась так. С помощью винтов в отливках, удерживавших зеркала, к которым последние прижимались пружинами, зеркала устанавливались так, чтобы свет обоих пучков мог быть виден в зрительную трубу. Посредством легкого деревянного стержня, достававшего по диагонали от зеркала до зеркала, измерялись длины двух путей, причем расстояния отсчитывались по маленькой стальной шкале с точностью до десятых долей миллиметра. Затем разность длин двух путей ликвидировалась путем передвижения зеркала е1. Это зеркало имело три регулировки; имелись регулировки по высоте и азимуту, как и у других зеркал, но только более тонкие, а также регулировка в направлении падающего пучка, благодаря ему оно скользило взад и вперед, оставаясь, однако, с высокой точностью параллельным своей начальной плоскости. Все три регулировки могли производиться при закрытом деревянном кожухе.

Поскольку теперь пути были приближенно равны, два изображения источника света или какого-либо другого хорошо очерченного предмета сводились вместе и зрительная труба оказывалась настроенной на отчетливое наблюдение ожидаемых интерференционных полос. Когда они появлялись, белый свет заменялся на свет натрия. Путем регулировки зеркала е1 полосы делались настолько отчетливыми, насколько это было возможно; затем возвращался белый свет, а винт, меняющий длину пути, приводился в очень медленное вращение (один оборот винта с сотней шагов резьбы на один дюйм менял путь примерно на 1000 длин волны) до тех пор, пока окрашенные интерференционные полосы не покажутся вновь в белом свете. Это давало удобную ширину и положение полос, и теперь прибор был готов для наблюдений.

Наблюдения проводились следующим образом. Вокруг чугунного лотка имелось шестнадцать эквидистантных отметок. Прибор приводился в очень медленное вращение (один оборот за шесть минут), и через несколько минут в момент прохождения одной из отметок пересечение нитей микрометра наводилось на самую яркую интерференционную полосу. Вращение происходило столь медленно, что это можно было сделать легко и точно. Отмечалось показание головки винта микрометра и делался очень легкий и плавный толчок для поддержания движения камня. При прохождении следующей отметки процедура повторялась, и все это продолжалось до тех пор, пока прибор не завершал шесть оборотов. Было обнаружено, что при поддержании прибора в состоянии медленного равномерного движения результаты оказывались гораздо более однородными и согласующимися между собой, чем когда камень останавливался для каждого наблюдения, поскольку эффекты деформаций могли быть заметными по крайней мере в течение полуминуты после того, как камень остановился, а за это время вступали в действие эффекты изменения температуры.

Полуденные наблюдения

 

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

8 июля

44,7

44

43,5

39,7

35,2

34,7

34,3

32,5

28,2

26,2

23,8

23,2

20,3

18,7

17,5

16,8

13,7

9 июля

57,4

57,3

58,2

59,2

58,7

60,2

60,8

62

61,5

63,3

65,8

67,3

69,7

70,7

73

70,2

72,2

11 июля

27,3

23,5

22

19,3

19,2

193

187

18,8

16,2

14,3

13,3

12,8

13,3

12,3

10,2

7,3

6,5

Среднее

43,1

41,6

41,2

39,4

37,7

38,1

37

37,8

35,3

34,6

34,3

34,4

34,4

33,9

33,6

32,4

30,8

Среднее в длинах волн

0,862

0,832

0,824

0,788

0,754

0,762

0,758

0,756

0,706

0,692

0,686

0,688

0,678

0,678

0,672

0,628

0,616

 

0,706

0,692

0,686

0,688

0,688

0,678

0,672

0,628

0,616

               

Конечное среднее

0,784

0,762

0,755

0,738

0,721

0,72

0,715

0,692

0,661

               

Вечерние наблюдения

8 июля

61,2

63,3

63,3

68,2

67,7

69,3

70,3

69,8

69

71,3

71,3

70,5

71,2

71,2

70,5

72,5

75,7

9 июля

26

26

28,2

29,2

31,5

32

31,3

31,7

33

35,8

36,5

37,3

38,8

41

42,7

43,7

44

12 июля

66,8

66,5

66

64,3

62,2

61

61,3

59,7

58,2

55,7

53,7

54,7

55

58,2

58,5

57

56

Среднее

51,3

51,9

52,5

53,9

53,8

54,1

54,3

53,7

53,4

54,3

53,8

54,2

55

56,8

57,2

57,7

58,6

Среднее в длинах волн

1,026

1,038

1,05

1,078

1,076

1,082

1,086

1,074

1,068

1,086

1,076

1,084

1,1

1,136

1,144

1,154

1,172

 

1,068

1,086

1,076

1,084

1,1

1,136

1,144

1,154

1,172

               

Конечное среднее

1,047

1,062

1,063

1,081

1,088

1,109

26

1,114

1,12

11

             


Страница: