Ионизирующие излучения и защита от нихРефераты >> Безопасность жизнедеятельности >> Ионизирующие излучения и защита от них
Содержание:
Введение. 3
Понятие ионизирующего излучения. Основные методы обнаружения ИИ. 4
Основы радиоактивной безопасности. Нормы радиационной безопасности (НРБ-99). 6
Критерии для принятия решений в различных ситуациях. Требования к контролю за выполнением норм. 11
Список использованной литературы: 14
Введение.
С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана.
Нет необходимости говорить о том положительном, что внесло в нашу жизнь проникновение в структуру ядра, высвобождение таившихся там сил. Но как всякое сильнодействующее средство, особенно такого масштаба, радиоактивность внесла в среду обитания человека вклад, который к благотворным никак не отнесёшь.
Появилось также число пострадавших от ионизирующей радиации, а сама она начала осознаваться как опасность, способная привести среду обитания человека в состояние, не пригодное для дальнейшего существования.
Причина не только в тех разрушениях, которые производит ионизирующее излучение. Хуже то, что оно не воспринимается нами органолептически: ни один из органов чувств человека не предупредит его о приближении или сближением с источником радиации. Человек может находиться в поле смертельно опасного для него излучения и не иметь об этом ни малейшего представления.
Такими опасными элементами, в которых соотношение числа протонов и нейтронов превышает 1…1,6, т.е. Р > 1…1,6. В настоящее время из всех элементов таблицы Д.И. Менделеева известно более 1500 изотопов. Из этого количества изотопов лишь около 300 стабильных и около 90 являются естественными радиоактивными элементами.
Продукты ядерного взрыва содержат более 100 нестабильных первичных изотопов. Большое количество радиоактивных изотопов содержится в продуктах деления ядерного горючего в ядерных реакторах АЭС.
Таким образом, источниками ионизирующего излучения являются искусственные радиоактивные вещества, изготовленные на их основе медицинские и научные препараты, продукты ядерных взрывов при применении ядерного оружия, отходы атомных электростанций при авариях на них.
Понятие ионизирующего излучения. Основные методы обнаружения ИИ.
Радиационная опасность для населения и всей окружающей среды связана с появлением ионизирующих излучений (ИИ), источником которых являются искусственные радиоактивные химические элементы (радионуклиды), которые образуются в ядерных реакторах или при ЯВ. Радионуклиды могут попадать в окружающую среду в результате аварий на радиационно-опасных объектах (АЭС и др. объектах ядерного топливного цикла – ЯТЦ), усиливая радиационный фон земли.
Ионизирующими излучениями называют излучения, которые прямо или косвенно способны ионизировать среду (создавать раздельные электрические заряды). Вообще к ИИ относят: рентгеновское и g-излучения; излучения, состоящие из потока заряженных (a+, b±, протонов р+, тяжёлые ядра отдачи) и незаряженных частиц - p, m, k - мезонов, мюонов и др. частиц.
При авариях реакторов образуются a+,b± частицы и g-излучение. При ЯВ дополнительно образуются нейтроны -n°.
Рентгеновское и g-излучение обладают высокой проникающей и достаточно ионизирующей способностью (gв воздухе может распространяться до 100м и косвенно создать 2-3 пары ионов за счёт фотоэффекта на 1 см пути в воздухе). Они представляют собой основную опасность как источники внешнего облучения. Для ослабления g-излучения требуются значительные толщи материалов.
Бета- частицы (электроны b- и позитроны b+ ) краткобежны в воздухе (до 3,8м/МэВ), а в биоткани – до несколько миллиметров. Их ионизирующая способность в воздухе 100-300 пар ионов на 1 см пути. Эти частицы могут действовать на кожу дистанционно и контактным путём (при загрязнении одежды и тела), вызывая «лучевые ожоги». Опасны при попадании внутрь организма.
Альфа – частицы (ядра гелия) a+ краткобежны в воздухе (до 11 см), в биоткани до 0,1 мм. Они обладают большой ионизирующей способностью (до 65000 пар ионов на 1 см пути в воздухе) и особо опасны при попадании внутрь организма с воздухом и пищей. Облучение внутренних органов значительно опаснее наружного облучения.
Заметим, что ионизирующая способность альфа и бета – частиц будет во многом зависеть от энергии, с которой они покидают «материнское» («дочернее») ядро. Проходя через среду (биологическую ткань) ИИ ионизируют ее, что приводит к физико-химическим или биологическим изменениям свойств среды(ткани). При ионизации организма нарушаются обменные процессы, нормальное функционирование нервной, эндокринной, имунной, дыхательной, сердечно-сосудистой и др. систем, в результате чего люди (животные) заболевают. Элементы технических устройств, особенно радиоэлектронной аппаратуры, при ионизации теряют или изменяют свои свойства и параметры, а при сильном облучении могут выйти из строя. Короче говоря, все живое и «неживое» не терпит излишнего облучения.
Последствия облучения для людей могут быть самыми различными. Они во многом определяются величиной дозы облучения и временем её накопления. Возможные последствия облучения людей при длительном хроническом облучении, зависимость эффектов от дозы однократного облучения приведены на рис. 1.
Таблица 1.
Последствия облучения людей.
Радиационные эффекты облучения
|
Телесные (соматические). Воздействуют на облучаемого. Имеют дозовый порог. |
Вероятностные телесные (соматические-стохастические). Условно не имеют дозового порога. | Гинетические.
Условно не имеют дозового порога. |
| Острая лучевая болезнь |
Сокращение продолжительности жизни. | Доминантные генные мутации. |
| Хроническая лучевая болезнь. | Лейкозы (скрытый период 7-12 лет). | Рецессивные генные мутации. |
| Локальные лучевые повреждения. | Опухоли разных органов (скрытый период до 25 лет и более). | Хромосомные абберации. |
