Нетрадиционные источники энергии на Украине и в Крыму
Рефераты >> Экология >> Нетрадиционные источники энергии на Украине и в Крыму

В то же время, для широкого развития геотермальной энергетики в Крыму требуется проведение первоочередных научных и технических работ в следующих направлениях:

обоснование ресурсо-сырьевой базы; составление кадастров перспективных месторождений, перечень скважин, которые показывали наличие геотермальных ресурсов; постановка задач по организации поисковых геологоразведочных работ;

обоснование возможности и определение целесообразности создания промышлен­ных теотермальных электростанций установленной мощностью от 10 до 100 МВт;

- разработка обоснований, проектирование и создание сети геотермальных энергоус­тановок небольшой мощности (0,5-3,0 МВт), которые бы работали на основе экс­плуатации отдельных высокопродуктивных скважин на маломощных месторожде­ниях и максимальной унификацией оборудования (создание блочно-модульных установок заводской подставки);

- обоснование возможности и целесообразности создания систем и установок для комбинированного использования геотермального тепла (от70°С) и органического топлива и строительства специальных ГеоТЭЦ на перспективных месторождениях;

- обоснование создания систем геотермального теплоснабжения крупных населенных пунктов в перспективных районах мощностью 10-100 МВт;

- привлечение в топливно-энергетический комплекс Крыма тепловых геотермальных ресурсов, имеющихся на действующих нефтегазовых месторождениях с использо­ванием существующего и вводимого фонда скважин и действующего оборудования, создание сети мелких установок геотермального теплоснабжения и горячего водо­снабжения мощностью 1-5 МВт с использованием отдельных высокопродуктивных скважин, а также создание систем и установок за пределами нефтяных и газовых месторождений;

- создание технологий и оборудования для привлечения тепла «сухих» горных пород и строительство на их основе систем геотермального теплоснабжения.

Общая экономия котельно-печного топлива в Крыму за счет использования геотермальной энергии позволит сэкономить к 2000 г. - 33,8 тыс. т у.т. . за период 2001-2005 гг. - 73,6 тыс. т у.т. и за период с 2006 по 2010 г. - 135,6 тыс. т у.т.

При этом необходимые капитальные вложения в реализацию этих технологий составляют соответственно - 6,68; 10,55; 13,58 млн. грн., кроме того, затраты на науч­но-исследовательские и проектно-конструкторские работы до 2010 г. могут составить до 3,4 млн. грн.

Институтом технической теплофизики НАН Украины проработаны также тех­нические предложения по строительству в Крыму опытно-экспериментальной Тарханкутской геотермальной электростанции, общей суммарной мощностью до 180 МВт. Введение в действие Тарханкутской ГеоТЭЦ позволит получать дополнительно 760-1010 млн. кВт/ч. электроэнергии в год. Однако, предварительные оценки стоимости строительства ГеоТЭЦ показывают, что необходимые капитальные вложения составят 547-600 млн грн. (295-323 млн. долларов США), что требует привлечения отечествен­ных и зарубежных инвесторов.

Таким образом, использование теплоты геотермальных вод представляет пока еще определенную сложность, связанную со значительными капитальными затратами на бурение скважин и обратную закачку отработанной воды, создание коррозийно-стойкого теплотехнического оборудования. Поэтому, основными направлениями раз­вития геотермальной энергии на ближайшую перспективу будут являться:

- разведка месторождений, оценка ресурсов, подготовка базы для ГеоТЭЦ;

- строительство установок по утилизации теплоты на существующих геотермальных скважинах для теплоснабжения близлежащих населенных пунктов, промышленных и сельскохозяйственных объектов;

- создание коррозийностойкого специального тепломеханического оборудования;

- организация предприятия по добыче и утилизации отработанного горючего тепло­носителя,

- создание установок по использованию низкопотенциальной теплоты подземного грунта и подземных вод из источников, залегающих на глубине до 150 м, которые имеют постоянную температуру среды до 20 С.[8]

ЭНЕРГИЯ БИОМАССЫ

Большие возможности в собственном энергообеспечении сельскохозяйствен­ных предприятий и экономии ТЭР заложены в использовании энергии отходов сельхозпроизводства и растительной биомассы. В сельскохозяйственном производстве в качестве источников тепла можно принять любые растительные отходы, непригодные для использования по прямому назначению или не нашедшие иного хозяйственного применения.

За последнее время использование биомассы в различных ее формах (дерево, древесный уголь, отходы сельскохозяйственного производства и животных) в мире в целом снизилось.

Однако, в развивающихся странах этот вид энергоресурсов составляет в среднем 20%. При этом в ряде стран Африки использование биомассы для энергетических целей равно примерна 60% общего энергопотребления, в азиатских странах- 40%, в странах Латинской Америки 0 до 30% и в ряде стран Европы, Ближнего Востока и Скверной Африки до 10%.

В ряде стран использование древесного топлива, древесного угля и сельскохозяйственных отходов поставлено на коммерческую основу. Следует отметить, что в сельских районах бывшего СССР доля использования древесного топлива весьма значительна и при переходе на новые энергоносители можно ожидать определенного роста самозаготовок.

Указанное особенно важно в странах с тропическим климатом и в крупных городах, где проблема ликвидации и одновременно энергетического использования отходов играет особенно важную роль. За прошедшие 10 дет только три страны – США, Дания и Швеция довели производство электроэнергии но установках, использующих биомассу отходов до 400 МВт.

Значительное развитие получила переработка биомассы, основанная на процессах газификации, теролиза и получения жидких топлив. Начиная с 1980 г. ежегодное производство этанола достигло, например в Бразилии, 10 млн.л.

При переработке биомассы в этанол образуются побочные продукты, прежде всего – промывочные воды и остатки перегонки. Последние являются серьезным источником экологического загрязнения окружающей среды. Представляют интерес технологии, которые позволяют в процессе очистки этих отходов получать минеральные вещества, используемые в химической промышленности, а также применять их для производства минеральных удобрений.[5]

Теплотворная способность сжигания 1 т сухого вещества соломы эквивалентна 415 кг сырой нефти, теплотворность 1 кг пшеничной соломы и сухих кукурузных стеб­лей равна 15,5 МДж, соевой соломы - 14,9 , рисовой шелухи - 14,3 , подсолнечной лузги - 17, 2 МДж. По этому показателю растительные отходы полеводства прибли­жаются к дровам - 14,6-15,9 МДж/кг и превосходят бурый уголь - 12,5 МДж/кг.

Получение промышленного биогаза растительного и животного происхожде­ния возможно за счет их сбраживания (метанового брожения) с получением метана и обеззараженных органических удобрений. Теплотворная способность 1 куб. м биогаза, состоящего из 50-80% метана и 20-50% углекислого газа, равна 10-24 МДж и эквива­лентна 0,7-0,8 кг условного топлива.[8]


Страница: