Строение атмосферы, гидросферы и литосферы
Рефераты >> Экология >> Строение атмосферы, гидросферы и литосферы

Основным природным источником серы служат вулканы, с выбросами которых в атмосферу поступа­ют диоксид серы, сероводород и элементная сера общим количеством 4 - 16 млн.т (в пересчете на диоксид серы). Кроме того, сероводород является продуктом жизнеде­ятельности бактерий-хемосинтетиков, обитающих на суше и в океане. В виде сульфат-иона сера содержится в природных водах, средняя его концентрация состав­ляет 2,65 мг SO4/1 г Н20. В составе многих минералов (уголь, нефть, железные, медные и другие руды) неор­ганическая сера встречается в земной коре.

В атмосфере соединения серы претерпевают целый ряд превращений (см рисунок ниже). Сероводород последо­вательно, в ряд ступеней, окисляется до диоксида серы, который, в свою очередь, тоже окисляется до серного ангидрида в результате фотохимического и радикального механизмов его взаимодействия с ком­понентами атмосферы, причем эти процессы существенно ускоряются в присутствии оксидов азота или углеводородов, а также оксидов железа, алюми­ния, хрома и других металлов. Атмосферная влага тоже способствует окислению диоксида в триоксид: в дождливую или туманную погоду время существова­ния атмосферного диоксида серы не превышает 50 - 60 мин.

Атмосферный цикл соединений серы.

Вывод из атмосферы

Триоксид серы легко взаимодействует с частица­ми атмосферной влаги и образует растворы серной кислоты. Реагируя с аммиаком или ионами металлов, присутствующими в атмосферной влаге, серная кисло­та частично переходит в соответствующие сульфаты. В основном это сульфаты аммония, натрия, кальция. Образование сульфатов происходит и в процессе окис­ления на поверхности твердых частиц, взвешенных в воздухе. Образовавшиеся сульфаты сохраняются в ат­мосфере не более 5 дней.

Значительная часть соединений серы оседает на землю с атмосферными осадками. Таким образом, из атмосферы сера снова попадает в гидросферу и в почву. Дождевая вода всегда имеет более кислую реакцию, чем поверхностные воды, ее рН составляет 5,6. В естественном цикле подобным путем обеспечивается необходимое подкисление почвы и почвенных раство­ров, позволяющее трансформировать минеральные питательные вещества в доступную для растений рас­творимую форму. Однако уже к 1976 г. 65% всех поступлений серы в атмосферу имело антропогенное происхождение, из них 95% приходилось на диоксид серы. Таким обра­зом, поступление серы из природных источников было превышено более чем в два раза. Сернистый ангидрид в промышленности образутся при сжигании угля и нефти и при обжиге сульфидных руд меди, никеля, свинца, цинка. Соединения серы содержатся и в вы­бросах автотранспорта.

В первые моменты после выброса диоксида серы в атмосфере практически отсутствуют частицы серной кислоты и сульфатов. Со временем доля SO2 в воздухе уменьшается, одновременно растет доля серы в виде серной кислоты и сульфатов. Количество серной кислоты в атмосфере достигает максимума спустя 10 часов после выброса, а сульфатов — через 30 - 40 часов.

В северном полушарии выбросы SO2 оцениваются в 136 млн.т в год, в южном — 10 млн.т в год. Повышение содержания диоксида и триоксида серы в атмосфере привело к появлению кислотных дождей (рН около 4). Кислотный дождь — одна из наиболее тяжелых форм загрязнения окружающей среды. Максимальный от­рицательный эффект кислотные дожди и газовые выбросы наносят атмосфере, а через нее — флоре и фауне. Этим же путем загрязняются водоемы. Под воздействием кислотных дождей закисляются почвы, что приводит к нарушению ионообменных процессов и буферных свойств почвы. Помимо этого в закисленной почве облегчается переход металлов из почвы в раство­ренную форму, доступную для растений, таким образом растения могут с почвенными растворами получать токсичные для них и большинства живых организмов металлы — цинк, железо, марганец, алюминий. Этим же путем интенсифицируется процесс выделения в почве сероводорода, токсичного для растений и микро­организмов.

5. Оценка загрязнения воздушного бассейна.

Для оценки загрязнения воздушного бассейна необходимо расчитать фактор опасности загрязнения, который рассчитывается по формуле:

,

где

j — фактор опасности загрязнения,

Ci — физическая концентрация загрязняющего вещества (мл г/м3),

ПДК — предельно допустимая концентрация вещества; верхний предел лимитирующий факторы среды, при которых их содержание не выходит за допустимые пределы экологической ниши человека, т.е. концентрация, которую может человек переносить без ущерба для здоровья. Значения ПДК утверждаются законодательно.

Если j больше 1, то существует опасность загрязнения воздушного бассейна.

Если j меньше либо равно 1, то фактическая концентрация загрязняющих веществ не превышает установленных нормативов.

Для специально охраняемых территорий j не должно превышать 0.8.

Т.к. на организм действует не одно, а несколько веществ, то говорят об эффекте суммации:

При оценки опасности загрязнения следует учитывать фоновую концентрацию — это загрязняющие вещества от других источников:

,

где

Сфi — фоновая концентрация.

Одним из факторов, который влияет на загрязнение воздушного бассейна, является перенос и рассеивание загрязняющих веществ в атмосфере.

На рассеивание влияют скорость и направление ветра, температурная стратификация атмосферы, температура воздуха в момент выброса, осадки и др. факторы.

Наиболее важная характеристика атмосферы — устойчивость. Устойчивость — это способность препятствовать вертикальным движениям и сдерживать турбулентность. В этом случае загрязняющие вещества, выброшенные вблизи поверхности, будут задерживаться в местах выброса.

Устойчивость зависит от изменений температуры воздуха с высотой — температурной стратификацией.

Выделяют три типа состояния атмосферы:

1) Безразличная — изменение тимпературы на 10 на каждые 100 м.

2) Неустойчивая — падает более чем на 10 на каждые 100 м.

3) Устойчивая — менее чем на 10 на каждые 100 м. Это состояние наименее благоприятное для интенсивного рассеивания.

При оценки рассеивания загрязняющих веществ температурная стратификация учмтывается с помощью коэффициента А, который изменяется от 140 до 250 для различных районов.

На распространение оказывает влияние температура атмосферы в момент выброса, tГВС.

По этому признаку все выбросы делят на “холодные” и “горячие”.


Страница: