Структура экосистем
Рефераты >> Экология >> Структура экосистем

Третий трофический уровень Вторичные консументы

Второй трофический уровень Первичные консументы

Первый трофический Первичные продуценты

уровень

6.2. Пирамиды биомассы.

Неудобств, связанных с использованием пирамид численности, можно избежать путем построения пирамид биомассы, в которых учитывается суммарная масса организмов (биомассы) каждого трофического уровня. Определение биомассы включает не только учет численности, но и взвешивание отдельных особей, так что это более трудоемкий процесс, требующий больше времени и специального оборудования. Таким образом, прямоугольники в пирамидах биомассы отображают массу организмов каждого трофического уровня, отнесенную к единице площади или объема.

При отборе образцов - иными словами, в данный момент времени- всегда определяется так называемая биомасса на корню, или урожай на корню. Важно понимать, что эта величина не содержит никакой информации о скорости образования биомассы (продуктивности) или ее потребления; иначе могут возникнуть ошибки по двум причинам:

1. Если скорость потребления биомассы (потеря вследствие поедания) примерно соответствует скорости ее образования, то урожай на корню не обязательно свидетельствует о продуктивности, т.е. о количестве энергии и вещества, переходящих с одного трофического уровня на другой за данный период времени, например за год. Например, на плодородном, интенсивно используемом пастбище урожай трав на корню может быть ниже, а продуктивность выше, чем на менее плодородном, но мало используемом для выпаса.

2. Продуцентом небольших размеров, таким, как водоросли, свойственна высокая скорость возобновления, т.е. высокая скорость роста и размножения, уравновешенная интенсивным потреблением их в пищу другими организмами и естественной гибелью. Таким образом, хотя биомасса на корню может быть малой по сравнению с крупными продуцентами (например, деревьями), продуктивность может быть не меньшей, так как деревья накапливают биомассу в течение длительного времени. Иными словами, фитопланктон с такой же продуктивностью, как у дерева, будет иметь намного меньшую биомассу, хотя он мог бы поддержать жизнь такой же массы животных. Вообще популяции крупных и долговечных растений и животных обладают меньшей скоростью обновления по сравнению с мелкими и короткоживущими и аккумулируют вещество и энергию в течение более длительного времени. Зоопланктон обладает большей биомассой, чем фитопланктон, которым он питается. Это характерно для планктонных сообществ озер и морей в определенное время года; биомасса фитопланктона превышает биомассу зоопланктона во время весеннего «цветения», но в другие периоды возможно обратное соотношение. Подобных кажущихся аномалий можно избежать, применяя пирамиды энергии.

7. Абиотический компонент экосистемы

Абиотический, т.е. неживой, компонент экосистемы подразделяется на эдафические (почвенные), климатические, топографические и другие физические факторы, в том числе воздействие волн, морских течений и огня.

7.1. Эдафические факторы.

Наука о почвах называется почвоведением. Уже в ранних работах подчеркивалось значение почвы как источника питательных веществ для растений. Хотя мы включили почву в раздел об абиотических факторах, правильнее считать ее важнейшим связующим звеном между биотическими и абиотическими компонентами наземных экосистем. Почвой называют слой вещества, лежащий поверх горных пород земной коры. В состав почвы входят четыре важных структурных компонента: минеральная основа (обычно 50-60% общего состава почвы), органическое вещество (до 10%), воздух (15-20%) и вода (25-35%).

Минеральный скелет почвы – это неорганический компонент, который образовался из материнской породы в результате ее выветривания. Минеральные фрагменты, образующие вещество почвенного скелета различны – от валунов и камней до песчаных крупинок и мельчайших частиц глины. Скелетный материал обычно произвольно разделяют на мелкий грунт (частицы менее 2 мм) и более крупные фрагменты. Частицы меньше 1 мкм в диаметре называют коллоидными. Механические и химические свойства почвы в основном определяются теми веществами, которые относятся к мелкому грунту.

Органическое вещество почвы образуется при разложении мертвых организмов, их частей (например, опавших листьев), экскретов и фекалий. Мертвый органический материал используется в пищу совместно детритофагами, которые его поедают и таким образом способствуют его разрушению, и редуцентами (грибами и бактериями), завершающими процесс разложения. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения – аморфное вещество, в котором уже невозможно распознать первоначальный материал, - получило название гумуса. Цвет гумуса варьирует от темно-бурого до черного. В химическом плане это очень сложная смесь изменчивого состава, образованная органическими молекулами различных типов; в основном гумус состоит из фенольных соединений, карбоновых кислот и сложных эфиров жирных кислот. Гумус, подобно глине, находится в коллоидном состоянии; отдельные частицы его прочно прилипают к глине и образуют глино-гумусовый комплекс. Также как и глина, гумус обладает большой поверхностью частиц и высокой катионообменной способностью. Эта способность особенно важна для почв с низким содержанием глины. Анионы в гумусе – это карбоксильные и фенольные группы. Благодаря своим химическим и физическим свойствам, гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества.

7.2. Климатические факторы.

7.2.1. Свет

Свет необходим для жизни, так как это источник энергии для фотосинтеза, однако есть и другие аспекты его воздействия на живые организмы. Интенсивность света, его качество (длина волны, или цвет) и продолжительность освещения (фотопериод) могут оказывать различное влияние.

Необходимость света для растений существенно влияет на структуру сообществ. Распространение водных растений ограничено поверхностными слоями воды. В наземных экосистемах в процессе конкуренции за свет у растений выработались определенные стратегии, например быстрый рост в высоту, использование других растений в качестве опоры, увеличение поверхности листьев.

7.2.2. Температура

Главным источником тепла является солнечное излучение; им могут быть также геотермальные источники, но они играют важную роль только в немногих местообитаниях.

Температура, так же как интенсивность света, в большой мере зависит от географической широты, сезона, времени суток и экспозиции склона. Однако часто встречаются и узколокальные различия в температуре; это в особенности касается микроместообитаний, обладающих собственным микроклиматом. Растительность тоже оказывает некоторое влияние на температуру. Например, иная температура бывает под пологом леса или в меньшей степени внутри отдельных групп растений, а также под листьями отдельного растения.


Страница: