Расчет цистерны
Рефераты >> Технология >> Расчет цистерны

Автосцепное устройство состоит из пяти частей:

· корпуса и расположенного в нем механизма;

· расцепного привода;

· ударно-центрирующего прибора;

· упряжного устройства с поглощающим аппаратом;

· опорных частей.

Вагон оборудован автосцепкой СА-3 (советская автосцепка, третий вариант). Эта автосцепка (рис.7) относится к нежестким автоматическим сцепкам.

Корпус автосцепки предназначен для передачи ударно-тяговых усилий упряжному устройству и для размещения механизма, вместе с которым осуществляется сцепление и расцепление вагонов. Корпус автосцепки представляет собой стальную полую отливку, имеющую головную часть (голову) и хвостовик. Головная часть имеет большой 1 и малый 4 зубья, которые, соединяясь, образуют зев. Из зева выступают части замка 3 и замкодержателя 2.

Горизонтальную проекцию зубьев, зева и выступающей части замка называют контуром зацепления автосцепки.

Головная часть корпуса имеет упор 5 для передачи сжимающего усилия через розетку концевой балки рамы вагона после полного сжатия поглощающего аппарата и деформации упряжного устройства.

Хвостовик корпуса имеет отверстие 6 для клина, соединяющего корпус с тяговым хомутом упряжного устройства. Для облегчения горизонтального перемещения корпуса автосцепки торцу хвостовика придана цилиндрическая форма.

1-большой зуб; 2-замкодержатель; 3-замок; 4-малый зуб; 5-упор; 6-отверстие для клина.

Рисунок 7 – Автосцепка СА-3

Корпус автосцепки отливают из углеродистой стали мартеновского производства, которая, согласно ГОСТ 88-55, имеет углерода 0,17-0,27%, марганца 0,5-0,9%, кремния 0,17-0,37%, серы и фосфора не более 0,045% каждого. Минимальные значения механических характеристик составляют: временное сопротивление 412 МПа, предел текучести 245 МПа и относительное удлинение 20-22%.

Корпуса, отлитые из такой стали, разрушаются при усилиях 2,2-2,9 МН, когда продольные оси автосцепок совмещены, и при усилиях 2,2-2,9 МН, когда эти оси смещены на 100 мм. Среднее значение разрушающего усилия составляет соответственно 3,1 и 2,9 МН, а начало текучести материала происходит при 2,1 и 1,8 МН.

4 Расчет на прочность котла цистерны

4.1 Расчет котла от действия внутреннего давления

В котле цистерны, подверженному действию внутреннего давления , возникают напряжения, которые могут быть вычислены по формулам безмоментной теории оболочек. Такие оболочки, не испытывающие изгиба, называют мембранами, а напряжения в них, определяемые без учета изгиба–мембранными напряжениями.

Мембранные напряжения в цилиндрической части котла составляют:

в поперечном сечении I-I (рис.8):

; (6)

в продольном сечении II-II (по образующей):

; (7)

где радиус и толщина секции цилиндрической части котла ().

Мембранные напряжения в сферическом днище:

, (8)

где радиус и толщина стенки днища ().

Рисунок 8–Расчетная схема котла

Расчетное давление принимаем .

Тогда

4.2 Расчет на вертикальные нагрузки

Вертикальные нагрузки, действующие на котел, могут рассматриваться в качестве равномерно распределенных с общей интенсивностью (рис.9):

. (9)

где вес груза ();

вес котла (

);

динамическая нагрузка (при расчете по I расчетному режиму );

длина цилиндрической части котла ().

Тогда

Напряжения в поперечном сечении котла составляют:

, (10)

где изгибающий момент в расчетном сечении котла;

момент сопротивления изгибу поперечного сечения котла.

Рисунок 9–Расчетная схема для расчета цистерны на вертикальные нагрузки

Реакции

Изгибающий момент в шкворневом сечении I-I составляет:

Момент сопротивления изгибу поперечного сечения котла:

Подставим эти значения в формулу (10):

5 Расчет на прочность оси колесной пары

Рисунок 10– Расчетная схема

Статическая нагрузка на ось от веса вагона , тогда:

вертикальная сила

горизонтальная сила

Диаметры оси:

шейки d1 = 130 мм;

подступичной части d2 = 194 мм;

средней части d3 = 172 мм.

Материал оси – сталь Осв.

Допускаемые напряжения:

МПа;

МПа;


Страница: