Энергетика СВЧ в народном хозяйстве
Рефераты >> Технология >> Энергетика СВЧ в народном хозяйстве

Рабочая и нагрузочная характеристики при безвыпрямительном питании магнетрона с применением дросселя и последовательного электромагнита по схеме, изображенной на рис. 1, практически не отличаются от характеристик магнетрона при строго постоянном анодном напряжении.

Уменьшение пульсаций магнитного поля. Современные магнетроны имеют металлокерамическую конструкцию, причем стенки корпуса анодного блока, выполненные из меди, достигают по толщине 9 — 10 мм. Эта особенность конструкции оказалась весьма полезной для уменьшения пульсаций магнитного поля в пространстве взаимодействия за счет поверхностного эффекта на частоте 100 Гц, т.е. на частоте пульсаций в однофазных двухпериодных схемах выпрямления. Толщина поверхностного слоя для меди на частоте 100 Гц d = 6,7 мм. При этом переменная составляющая магнитного поля в пространстве взаимодействия H2 будет составлять всего лишь 0,2 переменной составляющей магнитного поля вне корпуса анодного блока H1(H2/H1=e@ 0,2).

Поэтому если амплитуда пульсаций анодного тока 20% среднего значения, то амплитуда пульсаций напряженности магнитного поля в пространстве взаимодействия для магнетрона M571 — всего 2% — 3%. Это, в свою очередь, позволяет считать магнитное поле в пространстве взаимодействия постоянным, и требования к стабилизации источников питания для создания постоянного магнитного поля могут быть существенно снижены.

Сравнение электромагнитов и постоянных магнитов. Современные конструкции электромагнитов по размеру и массе не превышают постоянных магнитов с теми же параметрами. Электромагнит для магнетрона M571 является малогабаритным (210x130x110 мм), его масса - около 4 кг. Благодаря секционированию обмоток и наличию ребер электромагнит не требует принудительного охлаждения, так как тепловые потери обмоток невелики сами по себе. Расход энергии на питание электромагнита значительно перекрывается улучшением электронного КПД магнетрона и увеличением его СВЧ мощности. Кроме того, при использовании электромагнитов уменьшается стоимость эксплуатации установок. При замене магнетрона электромагнит остается, в то время как пакетированный магнетрон заменяется вместе с постоянным магнитом.

Резонаторные камеры для установок СВЧ нагрева диэлектриков

Конструкция резонаторных камер должна быть такой, чтобы внутри них нагрев был одинаков в любой части внутреннего объема, занятого обрабатываемым диэлектриком. С другой стороны, объем камер должен быть достаточно большим, чтобы в течение каждого цикла обрабатывать значительное количество материала и полностью использовать мощность СВЧ генератора. Как уже говорилось, для промышленного применения выделены небольшие участки спектра электромагнитных излучений, поэтому произвольно выбирать рабочую длину волны нельзя. Одним из наиболее удобных диапазонов для нагрева диэлектриков является диапазон волн вблизи 12,6 см (2375 ±50 МГц).

Исходя из приведенных требований в устройствах СВЧ нагрева находят применение резонаторные камеры в виде прямоугольных объемных резонаторов, линейные размеры которых в 5 — 6 раз превышают длину волны генератора. В подобном резонаторе может существовать несколько различных видов колебаний (более десяти), у каждого из которых свое распределение электрического и магнитного полей внутри объема резонатора. Такие резонаторы называются многомодовыми, т.е. в них может быть одновременно возбуждено несколько видов колебаний.

Поля различных видов колебаний, если они возбуждены от одного генератора с фиксированной длиной волны, могут в различных точках внутреннего объема резонатора интерферировать, т.е. складываться и вычитаться. В результате в некоторых точках могут быть более сильные поля (от сложения полей нескольких видов колебаний), а в других - более слабые (вследствие вычитания). Поэтому суммарное поле может быть существенно неравномерным.

Размеры и параметры объемных резонаторов могут быть рассчитаны на ЭВМ и оптимизированы. Задача оптимизации состоит в том, чтобы выбрать такие размеры резонатора, при которых в нем можно было бы возбуждать только определенные виды колебаний, а интерференция между ними давала бы возможно более равномерное поле по объему. При этом возбуждающие колебания устройства должны устанавливать строго определенные соотношения между амплитудами тех видов колебаний, которые дают суммарное равномерное поле.

Несколько иной способ получения равномерности нагрева — это применение двух или более генераторов, работающих на разных, но обычно близких частотах, или введение изменения во времени генерируемой длины волны в некоторых возможных пределах ±Dl.

Чем ближе по шкале длин волн расположены виды колебаний рассматриваемого многомодового резонатора, тем меньшее изменение длины волны генератора оказывается достаточным для улучшения равномерности нагрева и получения равномерного электромагнитного поля в нем даже при слабой загрузке резонатора обрабатываемым диэлектриком.

Для СВЧ нагрева наиболее пригодны такие многомодовые резонаторы, у которых резонансные длины волн различных видов колебаний расположены по шкале длин волн не сгустками, а возможно более равномерно. Это получается, когда размеры резонатора a, b и lрез соизмеримы, но не равны, т.е. когда резонатор представляет собой параллелепипед, близкий к кубу, но не куб (рис. 2).

Рис. 2. Возбуждение рабочей камеры устройств нагрева диэлектриков:

1 — рабочая камера; 2 и 3 — прямоугольные волноводы от СВЧ генераторов с рабочими длинами волн l1 и l2.

Например, для рабочего диапазона длин волн 12,6 ±0,252 см практически равномерный спектр резонансных длин волн или резонансных частот достигается при соотношениях axbxlрез=52x57x58 или 56x57x60 см. Резко неравномерный спектр получается при axbxlрез=58x60x60 или 59x59x60 см и тем более в кубическом резонаторе 59x59x59 см. Интересно, что в первом случае в полосе длин волн 12,6±0,252 см имеется 62 вида колебаний с различными резонансными частотами, во втором - 56, а соответственно в третьем, четвертом, пятом имеются только 30, 33 и 15.

Если резонансные частоты двух или нескольких видов колебаний равны между собой, то такие виды колебаний называются вырожденными. В кубическом резонаторе имеется шестикратное вырождение многих видов колебаний, а в третьем и в четвертом — двух- и иногда трехкратное вырождение. Вот почему в этих резонаторах меньше резонансных частот, чем в первом и во втором, при одной и той же рассматриваемой полосе рабочих длин волн.

Уровень загрузки резонаторных камер. Здесь необходимо различать два случая. Если резонатор полностью заполнен диэлектриком с высоким значением диэлектрической проницаемости e и большими потерями, то резко падает его нагруженная добротность и согласовать ввод энергии, обеспечивающий полную передачу СВЧ энергии от генератора в объем диэлектрика, относительно просто.


Страница: