Термическая обработка чугунов
Рефераты >> Технология >> Термическая обработка чугунов

СОДЕРЖАНИЕ:

I. Введение

II. Основная часть

«Термическая обработка чугунов».

1. Виды чугунов

2. Термическая обработка чугунов:

а) отжиг

б) нормализация

в) закалка и отпуск

г) старение

3. Химико-термическая обработка

чугунов

III. Заключение

IV. Используемая литература

Термическая обработка, совокупность операций теплового воздействия на материалы с целью изменения структуры и свойств в нужном направлении1. От правильного выполнения термической обработки зависит качество и стойкость изготовляемых деталей машин и механизмов, инструмента и другой продукции. Для проведения термической обработки требуются не только глубокие знания теории и практики, но и умение самостоятельно выбрать и разработать наиболее эффективный технологический процесс термической обработки для различных деталей и инструментов, умение выбрать наиболее рациональный метод контроля, установить причины дефектов, методы их предупреждения и исправления, использовать все технические возможности и правильно организовать работу .

При термической обработке в результате нагрева до определённой температуры и охлаждения происходит изменение структуры и, как следствие этого, изменение механических и физических свойств.

Все превращения, происходящие в результате нагревания до определённой температуры и охлаждения в сталях и чугунах, можно проследить по диаграмме железо – углерод (Fe – C), которая является фундаментом науки о стали и чугуне. Углерод с железом образует химическое соединение - цементит или может находиться в сплаве в свободном состоянии в виде графита. Соответственно существуют две диаграммы сплавов железо – углерод: цементитная и графитная.

1 Большой энциклопедический словарь; Под ред. Прохорова А.М.- М: “Советская

энциклопедия”, 1991, с.1324.

Виды чугунов.

Чугунами называют сплавы железа с углеродом, в которых содержание углерода больше 2.14%. Они содержат постоянные примеси (Si, Mn, S, P), а иногда и легирующие элементы ( Cr, Ni, V, Al и др.); как правило хрупок. В зависимости от состояния углерода в чугуне различают: белые, серые, высокопрочные и ковкие чугуны.

белый чугун серый чугун высокопрочный ковкий чугун

чугун

Весь углерод в белых чугунах находится в связанном состоянии в виде цементита. В зависимости от содержания углерода белые чугуны делят на эвтектический, доэвтектический и заэвтектический.

Эвтектический чугун – это чугун с содержанием углерода 4.3% имеет структуру ледебурита.

Доэвтектический чугун - это чугун с содержанием углерода от 2.14 до 4.3% имеет структуру перлит + вторичный цементит + ледебурит.

Заэвтектический чугун - это белый чугун с содержанием углерода от 4.3 до 6.67 % имеет структуру цементит первичный + ледебурит.

эвтектический доэвтектический заэвтектический

чугун чугун чугун

Образование структур белых чугунов, в которых углерод находится в связанном состоянии в виде цементита, характеризуется по диаграмме состояния сплавов системы железо – цементит (Fe-Fe3C ) . Диаграмма состояния сплавов системы железо – графит характеризует образование структур чугунов, в которых весь углерод находится в свободном состоянии в виде графита, то есть нет цементита и структура феррито – графитная1.

Но при производстве чугунов выяснилось, что кроме белых и феррито – графитных чугунов можно получить и чугуны, в структуре которых имеются и графит, и цементит, то есть часть углерода находится в свободном, а часть - в связанном состоянии;и такие чугуны получают в реальных условиях.

1 Кузьмин Б.А. и другие . Металлургия. Металловедение и конструкционные материалы - М., “Высшая школа”, 1977, с. 187.

В производственных условиях получают чугуны со следующими структурами:

1. феррит + перлит + графит (серый феррито – перлитный чугун). При ускорении охлаждения при температуре 738о выделение графитного эвтектойда прекращается и оставшийся углерод переходит в цементит, в результате чего образуется часть перлита, следовательно, в этом чугуне есть и цементит, и графит. У такого чугуна основа доэвтектойдной стали ( феррит + перлит ) испещрена чешуйками графита1.

2. перлит + графит (серый перлитный чугун) Если охлаждение ускоряется при температурах выше 738о , то графитный эвтектойд не выделяется, а аустенит превращается в перлит. В этом чугуне, поскольку в перлит входит цементит,имеется цементит и графит. У такого чугуна основа эвтектойдной стали ( перлит ) и графитные включения в форме чешуек.

3. перлит + цементит вторичный (перлитно – цементитный чугун). У такого чугуна основа как у заэвтектойдной стали ( перлит + цементит вторичный ) и включения графита. При увеличении скорости охлаждения между температурами линии эвтектического и эвтектойдного превращения (1153о-738о) до перлитного превращения из аустенита выделяется не графит, а цементит.

4. перлит + цементит + графит или перлит + ледебурит + графит (половинчатые чугуны). В структуре таких чугунов наряду с графи- том наблюдается ледебурит (охлаждение ускорилось при эвтектическом превращении). Ледебурит состоит из цементита и перлита. В этих чугунах также имеется и цементит, и графит.

_

1Никифоров В.М. Технология металлов и конструкционные материалы. М.,”Высшая школа” ,1980, с.99.

Кристализация указанных структур не может быть объяснена только одной из диаграмм состояний (Fe-Fe3C или железо – графит). При образовании этих структур идет смещенная кристаллизация по обеим системам: графитной (Fe-C )

и цементитной (Fe-Fe3C ). Это объясняется так: кристаллизация начинается по графитной системе и выделяется какое-то количество графита, но для того, чтобы выделялся всё время графит, требуется весьма замедленное охлаждение, при этом чем ниже температура, тем скорость охлаждения, необходимая для кристаллизации графита, должна быть меньше, так как с понижением температуры скорость кристаллизации графита уменьшается. Если скорость охлаждения при какой-то температуре больше скорости, обеспечивающей выделение графита, то выделение графита полностью или частично прекращается, сплав по отношению к условиям кристаллизации графита оказывается переохлаждённым, что способствует выделению цементита и кристаллизация с графитной системы переходит на цементитную (смешанный процесс кристаллизации).

Чугун, имеющий графитные включения сфероидальной формы, называют

высокопрочным чугуном, так как графит сфероидальной формы имеет меньшее отношение его поверхности к объему, что определяет наибольшую сплошность металлической основы, а следовательно, и прочность чугуна. Структура металлической основы чугунов с шаровидным (сфероидальным) графитом такая же, как и в обычном сером чугуне, то есть в зависимости от химического состава чугуна, скорости охлаждения (толщины стенки отливки) могут быть получены чугуны со следующей структурой: феррит + шаровидный графит (ферритный высокопрочный чугун), феррит + перлит + шаровидный графит (феррито-перлитный высокопрочный чугун), перлит + шаровидный графит (перлитный высокопрочный чугун)1.


Страница: