Назначение и свойства керамики и смазочных материалов
Рефераты >> Строительство >> Назначение и свойства керамики и смазочных материалов

Грубокерамические материалы

Крупнопористые крупнозернистые керамические материалы применяются для изготовления крупногабаритных изделий в строительстве, архитектуре малых форм и т. п. Эти сорта выдерживают высокие температуры и термические колебания. Их пластичность зависит от содержания в породе кварца и алюминия (кремнезема и глинозема. — Ред.). В общей структуре много глинозема с высоким содержанием шамота. Температура плавления колеблется от 1440 до 1600 °С. Материал хорошо спекается и дает незначительную усадку, поэтому используется для создания больших объектов и крупноформатных настенных панно. При изготовлении художественных объектов не следует превышать температуру в1300°С.

Каменная керамическая масса

Основу этого сырья составляют шамот, кварц, каолин и полевой шпат. Во влажном состоянии оно имеет черно-коричневый цвет, а после сырого обжига — цвет слоновой кости. При нанесении глазури каменная керамика превращается в прочное, водостойкое и несгораемое изделие. Она бывает очень тонкой, непрозрачной или в виде однородной, плотно спекшейся массы. Рекомендуемая температура обжига: 1100-1300 °С. При ее нарушении глина может рассыпаться. Материал используют в различных технологиях изготовления гончарных изделий из пластинчатой глины и для моделирования. Отличают изделия из красной глины и каменную керамику в зависимости от их технических свойств.

Пористая керамическая масса

Глина для керамики представляет собой белую массу с умеренным содержанием кальция и повышенной пористостью. Ее натуральный цвет — от чисто-белого до зеленовато-коричневого. Обжигается при низких температурах. Рекомендуется необожженная глина, так как для некоторых глазурей однократного обжига недостаточно.

Техническая керамика

К технической керамике относятся электро- и радиотехническая керамика, керметы, абразивные керамические материалы, пенокерамика и другие.

По электрическим свойствам керамику подразделяют на собственно электротехническую, применяемую при частотах до 20000 Гц, и радиотехническую, используемую преимущественно при высоких (более 20000 Гц) частотах.

Электротехническая керамика по области применения делится на изоляторную (установочную), конденсаторную (сегнетоэлектрики) и пьезокерамику.

Изоляторная керамика должна иметь низкие потери, хорошие электроизоляционные свойства и прочность. Изоляторная керамика должна иметь большую диэлектрическую проницаемость, малые потери и температурный коэффициент. Основу конденсаторной низкочастотной сегнетокерамики составляют твердые растворы титанатов бария, кальция, циркония и станнатов кальция и магния и др. Использование конденсаторной керамики увеличивает надежность работы и теплостойкость конденсаторов и уменьшает их размеры.

Пьезокерамика – керамические материалы с пьезоэлектрическими свойствами. Структура пьезокерамики – твердые растворы на основе титанита бария, ниобата бария и ниобата и титаната свинца.

Абразивные керамические материалы (абразивы) – вещества повышенной твердости, применяемые в массивном или измельченном состоянии для механической обработки других материалов. Естественные абразивные материалы – кремень, наждак, пемза, корунд, гранат, алмаз и др.; искусственные абразивные материалы – электрокорунд, карбид кремния, боразон, эльбор, синтетический алмаз и др. По убыванию абразивной способности эти материалы располагаются так: синтетический алмаз, кубический нитрид бора, карбид кремния, карбид титана и электрокорунд. В настоящее время разрабатываются новые абразивные материалы на основе боридов и карбидов переходных металлов, а также типа белбора.

Основные характеристики абразивных материалов: твердость. Прочность и износ, размер и форма абразивного зерна, абразивная способность, зернистость. С увеличением прочности этих материалов улучшается сопротивляемость усилиям резания, так как сопротивление сжатию у них в несколько раз больше, чем сопротивление растяжению. Прочность абразивных материалов на растяжение и сжатие снижается с повышением температуры шлифования.

Измельченный и классифицированный абразивный материал называют шлифовальным. Зернистость шлифовальных материалов определяется размером абразивных зерен, т.е. группой материалов по ГОСТ 3647-80: шлифзерно, шлифпорошки, микрошлифпопрошки и тонкие микрошлифпорошки. Обозначение зернистости дополняют индексами В, П, Н и Д, которые характеризуют процентное содержание (массовую долю) основной фракции (36…60%).

Абразивные керамические материалы используются как в несвязанном виде (порошки, пасты, суспензии), так и в связанном (бруски, шлифовальные шкурки, круги, головки и др.).

Заключение

Из всего сказанного можно сделать вывод.

В настоящее время во многих отраслях науки и техники используют разнообразные виды керамики, которые представляют собой поликристаллические материалы. Керамику получают спеканием природных глин, их смесей с различными минеральными добавками, а также некоторых оксидов металлов и бескислородных тугоплавких соединений. Керамика получила широкое распространение во всех областях жизни — в быту (различная посуда), строительстве (кирпич, черепица, трубы, плитки, изразцы, скульптурные детали), в технике, на железнодорожном, водном и воздушном транспорте, в скульптуре и прикладном искусстве. Основными технологическими видами керамики являются терракота, майолика, фаянс, каменная масса и фарфор. В лучших своих образцах керамика отражает высокие достижения искусства всех времён и народов.

Состав керамики состоит из: кристаллической фазы, стекловидной фазы и газовой фазы.

В керамической технологии используют главным образом каолины и глины, а также и другие виды материального сырья, например чистые оксиды. Под каолинами и глинами понимают природные водные алюмосиликаты с различными примесями, способные при замешивании с водой образовывать пластичное тесто, которое после обжига необратимо переходит в камневидное состояние.

По характеру строения керамику подразделяют на грубую и тонкую. Изделия грубой керамики (гончарные изделия, кирпич, черепица) имеют пористый крупнозернистый черепок неоднородной структуры, окрашенный естественными примесями в желтовато-коричневые цвета. Тонкокерамические изделия отличаются тонкозернистым белым или светлоокрашенным, спекшимся или мелкопористым черепком однородной структуры.

Вводная часть

Смазочные материалы – наиболее многочисленный класс продуктов переработки нефти. Смазочные материалы характеризуются следующими свойствами: вязкостью, температурами застывания и вспышки, коррозионным воздействием, коксуемостью, зольностью, антиокислительной стабильностью и некоторыми другими свойствами.

Смазочно-охлаждающие материалы – жидкости, обеспечивающие при вводе их в зону резания повышение стойкости инструмента, улучшению качества обрабатываемой поверхности и уменьшению сил резания.

Смазочные материалы

Смазочный материал – материал, вводимый на поверхности трения для уменьшения силы трения или интенсивности изнашивания.

Смазочные материалы должны обладать строго заданными свойствами, которые определяются величинами удельной и полной нагрузок в зоне трения; максимальной, средней и объемной температурами в зоне контакта; кинематикой движения в зоне трения. При этом должны учитываться природа материалов обоих деталей трения, характеристики волнистости и шероховатости поверхностей в зоне трения, свойства окружающей среды и др.


Страница: