Проектирование технологии производства железобетонных мостовых балок
Рефераты >> Строительство >> Проектирование технологии производства железобетонных мостовых балок

ЮВ 14/5 7/3,5 СЗ 13/4,8 21/4,2

Рисунок 1.- Роза ветров для г. Солигорска

Согласно СНиП 11-89-80 продольную ось аэрационных фонарей формовочных цехов (или стены зданий с проемами аэрации) необходимо ориентировать перпендикулярно или под углом не менее 450 к направлению господствующих ветров летнего периода года. Это значит, что продольная ось пролетов формовочных цехов должна располагаться под углом от 0 до 900 для СВ ветра и под углом от 315 до 45 0 для западного ветра, т.е. в результате от 315 до 90 0.

По условиям инсоляции продольную ось здания (светоаэрационных фонарей) располагают в пределах 45…110 0 относительно меридиана. На основании проведенного анализа было установлено, что продольная ось формовочных цехов должна быть расположена в пределах 45…90 0 относительно меридиана для г. Солигорска.

3 Проектирование технологии производства железобетонных мостовых балок и формовочного цеха

3.1 Обоснование проектных решений конструкции балки пролётного строения длиной 24 м

Железобетонные балки пролётных строений должны изготавливаться в соответствии со СНиП 2.05.03-84 по рабочим чертежам серии 3.503-81 выпуск 5-5-ТТ.

Для изготовления балок пролётных строений применяется тяжёлый бетон по ГОСТ 25192 ГОСТ 26633, класса по прочности на сжатие С28/35. Допускается применение бетона класса С32/40 для ускорения набора передаточной прочности. Марка бетона по морозостойкости в зависимости от температурной зоны строительства:

- для температурных зон 1,2,3,6 и 7 – F200;

- для температурных зон 4,5 и 8 – F300.

Таблица 4. Характеристика температурных зон

Средняя температура наиболее холодного месяца

- 20°С и выше

Ниже -20°С

Средняя температура наиболее холодной пятидневки с обеспечённостью 0,92

-30°С и выше

Ниже -30°С до -40°С включительно

Ниже -40°С

Ниже -30°С до -40°С включительно

Ниже -40°С

Номер температурной зоны при влажности воздуха

≥40%

1

2

3

4

5

≤40%

6

7

-

8

-

Балки пролётных строений длиной 24м изготавливаю на линейных стендах.

Цемент, щебень, песок, вода

Цемент должен соответствовать ГОСТ 10178-85 «Портландцемент и шлакопортландцемент. Технические условия». Применение ЦЕМ 11/А-Ш с активными минеральными добавками по массе свыше 5% допускается при экономическом обосновании и положительных результатах заданных показателей качества при испытании контрольных кубов-образцов подборов составов бетонов по ГОСТ 9818.0-81 .

Щебень должен соответствовать ГОСТ 8267-93 «Щебень и гравий из плотных горных пород для строительных работ. Технические условия».

Щебень с зернами крупностью свыше 15 мм не допускается применять при приготовлении бетонной смеси.

Песок должен соответствовать ГОСТ 8736-93 «Песок для строительных работ. Технические условия». Модуль крупности песка Мк = 2,2 3,0.

Вода должна соответствовать СТБ 1114-98 «Вода для бетонов и растворов. Технические условия».

При применении технической воды испытания проводят один раз в год на содержание растворимых солей, сульфатов, хлоридов и взвешенных частиц, а также на соответствие другим техническим требованиям.

Армирование напрягаемой арматурой

Напрягаемая арматура – прямолинейные горизонтальные пучки из 24 проволок класса В-ІІ диаметром 5мм с двумя каркасно-стержневыми анкерами.

Часть пучков «обрывается» в пролёте. «Обрыв» пучков осуществляется изоляцией концевых участков пучков промасленной плотной бумагой по битумной мастике, паклей (мешковиной) пропитанной битумом или другими материалами при условии исключения сцепления пучков с бетоном.

При передаче усилия с напрягаемой арматуры на бетон необходимо контролировать проскальзывание изолированной части пучков. Величину ухода пучка через два дня после натяжения определять по формуле:

Δlизол – длина изолированной части пучка;

Ep -

Контролируемое усилие, передаточная прочность бетона(прочность бетона в момент передачи усилия обжатия на бетон) и прочие характеристики балки даны в даны в таблице 3.

Температурная зона (влажность воздуха)

Натяжение напрягаемой арматуры

Контролируемое напряжение в арматуре после её натяжения

Передаточная прочность бетона

Выгиб балки после передачи усилия обжатия на бето(в середине пролёта

 

Начальное натяжение в арматуре

Усилие в пучке (пряди)

Вытяжка при натяжении с двух сторон

После заанкеривания

Через два дня

 

МПа

кН

мм

МПа

МПа

-

мм

 

1,2,3,4,5 (≥40%)

941,5

443,5

64×2

913,4

887,3

75%

70%

28

 

6,7,8( ≤40%)

970,9

457,3

66×2

942,8

913,7

78%

70%

30

 


Страница: