Звезды их рождение, жизнь и смерть
Рефераты >> Авиация и космонавтика >> Звезды их рождение, жизнь и смерть

По современным представлениям, жизненный путь одиночной звезды определяется её начальной массой и химическим составом. Чему равна минимальная возможная масса звезды, мы с уверенностью сказать не можем. Дело в том, что маломассивные звёзды очень слабые объекты и наблюдать их довольно трудно. Теория звёздной эволюции утверждает, что в телах меньше чем семь-восемь сотых долей массы Солнца долговременные атомные реакции идти не могут. Эта величина близка к минимальной массе наблюдаемых звёзд, их светимость меньше солнечной в десятки тысяч раз. Температура на поверхности подобных звёзд не превосходит 2–3 тысячи градусов, это багрово красные карлики.

В звёздах большой массы, напротив реакции протекают с огромной скоростью. Если масса рождающейся звезды превышает 50–70 солнечных масс, то после загорания термоядерного топлива чрезвычайно интенсивное излучение своим давлением может просто сбросить излишек массы. Через несколько миллионов лет, а может быть и раньше, эти звёзды могут взорваться, как сверхновые (так называют взрывающиеся звёзды с большой энергией вспышки).

Важную роль в жизни звезды играет магнитное поле. С магнитным полем связаны практически все проявления солнечной активности: пятна, вспышки, факелы и др. На звёздах, магнитное поле которых сильнее солнечного, эти процессы протекают с большей интенсивностью. В частности, переменность блеска некоторых таких звёзд объясняют появлением пятен, аналогичных солнечным, но закрывающих десятки процентов их поверхности. Однако физические механизмы, обуславливающие активность звёзд, ещё не до конца изучены. Наибольшей интенсивности магнитные поля достигают на компактных звёздных остатках белых карликах и особенно нейтронных звёздах.

4.Звезды умирают

Превращение, «выгорание», водорода в гелий при термоядерной реакции происходит в центральных областях звезды, в условиях высоких температур.

В наружных областях звезды водород не «выгорает» из-за низкой температуры и низком давлении. Так как количество водорода в центральных областях звезды ограничено, рано или поздно (в зависимости от массы звезды) он практически весь «выгорит». При этом процессе масса и радиус центральной области звезды уменьшаются.

Что произойдет, когда реакция «гелий-углерод» исчерпает себя, выгорит весь гелий, а так же прекратится ядерная реакция «водород-гелий» в тонкой оболочке ядра?

Звезды с массами до 1,4 масс Солнца, существенную часть своей массы, образующую их наружную оболочку, "сбрасывают".(см.рис. 1.) Через несколько десятков тысяч лет, мгновение в космических масштабах, оболочка рассеивается и остается небольшая, очень горячая и плотная звезда. Медленно остывая, она превращается в «белого карлика» (белый – то есть очень горячий).

«Белые карлики» как бы «вызревают» в недрах «красных гигантов». «Белые карлики», в которых весь водород выгорел и ядерные реакции прекратились, представляют собой, видимо, последний этап эволюции звезды. Постепенно остывая, они излучают все меньше и меньше энергии, светимость падает, гравитационные силы сжимают вещество. «Белые карлики» постепенно переходят в разряд «черных карликов» - холодных звезд огромной плотности и небольшого размера (порядка земного при массе порядка солнечной). Этот процесс длится сотни миллионов лет.

Так прекращает свое существование большинство звезд. Однако финал жизни звезд, массы которых превышают солнечную, может быть иным. Некоторые звезды на определенном этапе своей эволюции взрываются. В этих случаях говорят о вспышке «сверхновой».

Вспышка «сверхновой» звезды – весьма редкое явление. В больших звездных системах, подобных нашей Галактике, вспышке «сверхновых» происходят в среднем раз в сто лет.

Существует несколько гипотез о причине взрывов звезд, наблюдаемых как «сверхновые». Единой точки зрения нет. Возможный вариант – катастрофически быстрое выделение потенциальной энергии гравитационных сил при резком сокращении размеров ядра.

Если звезды с массой меньше 1,4 массы Солнца могут преодолеть этап эволюции от протозвезды к «красному гиганту» и «белому карлику», то звезды, у которых масса составляет от 1,4 до 2, 5 масс Солнца, не могут перейти в устойчивое состояние «белого карлика». После сброса оболочки они катастрофически быстро сжимаются до размеров порядка 10 км. При этом скорость вращения должна резко возрасти. Теоретические расчеты показывают, что такие звезды состоят из вещества плотностью до 1015 г/см3. Это уже «плотно упакованные» нейтроны, образующие нейтронные звезды (см. рис. 1).

Первоначальная температура поверхности нейтронов звезды – сотни миллионов градусов (до миллиарда). Однако звезда быстро остывает. Даже в случае высокой температуры поверхности нейтронная звезда является очень сложным объектом для наблюдения из-за малых размеров. То есть пытаться обнаружить нейтронные звезды по тепловому и электромагнитному излучению бесполезно.

Если в ядре звезды «выгорел» весь водород, то давление газа в ядре не может уравновесить гравитационные силы при массе звезды, превышающей некоторый предел (по разным оценкам от 2,5 до 10 масс Солнца).

Звезда начинает сжиматься с огромной скоростью, плотность вещества начинает резко расти. Через очень короткое время (секунды!) звезда может превратиться в сверхплотную точку, будет раздавлена своей собственной массой – гравитационный коллапс. Такой объект называют гравитационной могилой, или черной дырой.

Превратившись в черную дыру, небесное тело не исчезает из Вселенной. Черная дыра поглощает световые лучи, идущие от нее на более значительное расстояние. Черная дыра может вступать в гравитационное взаимодействие с другими телами: она может удерживать около себя планеты или образовывать с другой звездой двойную систему.

Черную дыру невозможно увидеть. Зато возможно, наблюдая за движением звезд, выявить (по «смещению» спектра излучения) направления и величины их скоростей. Сегодня известно несколько точек во Вселенной, к которым сходятся вектора скоростей окружающих звезд. Возможно, в этих точках находятся черные дыры.

Отметим, что одиночная звезда не может накопить массу, превышающую 100 солнечных масс. При таких массах звезды радиационное давление изнутри звезды приведет к взрыву. Непосредственными наблюдениями звезды с массами более 75 масс Солнца не обнаружены. Звезды с массами более чем 25 масс Солнца неустойчивы и теряют газ под действием радиационного давления или при взрывных процессах.

Заключение

За период немногим более двух столетий представление о звёздах изменилось кардинально. Из непостижимо далёких и равнодушно светящихся точек на небе они превратились в предмет всестороннего физического исследования.

Благодаря развитию наблюдательных технологий, астрономы получили возможность исследовать не только видимое, но и невидимое глазу излучение звёзд. Сейчас уже многое известно об их строении и эволюции, хотя немало остаётся и непонятного.

Список литературы

Шкловский И.С. Звезды: их рождение, жизнь и смерть. – 3-е изд., перераб. -М.: Наука, Главная редакция физико-математической литературы, 1984-384с.


Страница: