Генно-модифицированные организмы. Классификация трансгенных растений по признакам
Рефераты >> Ботаника и сельское хоз-во >> Генно-модифицированные организмы. Классификация трансгенных растений по признакам

1. Генно-модифицированные организмы. Классификация трансгенных растений по признакам

Важнейшей составной частью современной биотехнологии является генетическая, или генная инженерия.

Cуществует несколько определений, раскрывающих суть генной инженерии. По мнению академика А.А. Баева, это «конструирование in vitro функционально активных генетических структур (рекомбинантных гибридных ДНК)», или «создание искусственных генетических программ».

В Интернете дается другое определение: «Генная инженерия — это управление генетической основой организмов посредством внедрения или удаления специфических генов, с использованием техники современной молекулярной биологии».

Методы генетической инженерии позволяют конструировать фрагменты рекомбинантных молекул ДНК того или иного организма, которые при внедрении в генетический аппарат придавали бы им свойства, полезные для человека.

Современная биотехнология базируется на принципах традиционной селекции, заключающихся в приобретении организмами необходимых качественно новых признаков. Однако в отличие от обычной селекции, которая в течение длительного времени испытывает множество комбинаций генов, биотехнология позволяет ввести в генетический аппарат объекта один ген или группу генов, отвечающих за проявление желаемого признака, что намного ускоряет достижение требуемого результата (рис. 1).

Генно-инженерно-модифицированный(генно-модифицированный) организм — организм или несколько организмов, любое неклеточное, одноклеточное или многоклеточное образование, способные к воспроизводству или передаче наследственного генетического материала, отличные от природных организмов, полученные применением методов генной инженерии и содержащие генно-инженерный материал, в том числе гены, их фрагменты

или комбинации генов.

Рис. 1. Отличительные особенности генной инженерии растений

Для создания генно-модифицированных организмов разработаны методики, позволяющие вырезать из молекул ДНК необходимые фрагменты, модифицировать их соответствующим образом, реконструировать в одно целое и клонировать — размножать в большом количестве копий.

Организмы, подвергшиеся генетической трансформации, называют трансгенными.

Трансгенные организмы — животные, растения, микроорганизмы,вирусы, генетическая программа которых изменена с применением методов генной инженерии.

Основные задачи генной инженерии в создании трансгенных растений в современных условиях развития сельского хозяйства и общества довольно многообразны (табл. 1).

Таблица 1

Основные задачи генной инженерии растений

На практике ситуация выглядит следующим образом: среди промышленно выращиваемых трансгенных растений доля устойчивых к гербицидам составляет 71%, устойчивых к вредителям — 22%, устойчивых одновременно к гербицидам и вредителям — 7%, устойчивых к вирусным, 6актериальным и грибным болезням — менее 19 (рис. 2).

Рис. 2. Структура промышленно выращиваемых трансгенных растений,

различающихся по устойчивости

Из рисунка видно, что среди главных признаков, контролируемых перенесенными генами, на первом месте стоит устойчивость к гербицидам.

Среди генов, определяющих устойчивость к гербицидам, уже клонированы гены устойчивости к таким гербицидам, как глифосат (Раундап), фосфинотрицин (Биалафос), глифосинатаммония (Баста), сульфонилмочевинным и имидозолиноновым препаратам. С использованием этих генов уже получены трансгенные соя, кукуруза, хлопчатник и т.д. В России также проходят испытания трансгенные культуры, устойчивые к гербицидам. В Центре «Биоинженерия» создается сорт картофеля, устойчивый к Басте, проходящий в настояшее время полевые испытания.

Другой распространенной группой являются трансгенные растения, устойчивые к насекомым-вредителям. Так, относительно давно известна бактерия Bacillus thuringiensis, продуцирующая белок дельта-эндотоксин, который очень токсичен для многих видов насекомых и безопасен для млекопитающих. Установлено, что встраивание гена этого белка в геном растений дает возможность получить трансгенные растения, не повреждаемые насекомыми.

Специалисты по генной инженерии в результате длительной работы подобрали необходимые штаммы Bacillus thuringiensis и создали генно-инженерные конструкции для конкретных групп насекомых.

Так, для получения трансгенного картофеля, устойчивого к колорадскому жуку, компании «Моnsanto» понадобилось 16 лет экспериментальной работы и 100 млн. долл. инвестиций.

В настоящее время компаниями «Моnsanto», «АgrEvо», «Мусоgеn» созданы другие трансгенные формы, устойчивые к насекомым, так называемые Bt-растения - соя, хлопчатник, кукуруза.

Специалисты и ученые полагают, что применение Bt –растений будет иметь не только хорошее коммерческое будущее, но и экологический эффект. Известно, что только 5% внесенного инсектицида срабатывает по назначению, остальные 95% попадают в окружающую среду, уничтожая многие виды насекомых, в том числе и полезных. Сокращение же объемов применения инсектицидов приведет к восстановлению популяций многих полезных насекомых, что, несомненно, положительно скажется на многих видах растительного и животного мира.

К третьей группе по распространенности относятся трансгенные растения, одновременно устойчивые к гербицидам и насекомым.

Площади возделывания этих культур увеличились с 0,1% в 1997 г. до 1% в 1998 г. Примерами этой группы являются кукуруза и хлопчатник, устойчивые к Раундапу и одновременно устойчивые к кукурузному мотыльку и хлопковой совке соответственно.

Менее распространенной является пока группа трансгенных культур, устойчивых к бактериальным, вирусным и грибным болезням.

Одним из первых достижений в защите растений методами генной инженерии явилось создание трансгенных растений, устойчивых к вирусам, путем внесения генов белков вирусной оболочки.

Активный синтез такого белка, обладающего большим сродством с РНК вируса, не дает ей возможности активно размножаться в клетке хозяина, что и обусловливает устойчивость такого трансгенного растения к вирусам. В 1986 г. подобная устойчивость была получена для табака.

Введение гена оболочки вируса табачной мозаики позволило создать устойчивый к нему трансгенный табак. Создаются также трансгенные формы огурцов, арбуза, цукини, устойчивых к различным вирусам и проходящих в настоящее время полевые испытания. К достижениям отечественной науки следует отнести создание картофеля, устойчивого к вирусу Y, который в настоящий момент находится на стадии испытаний.


Страница: