Ньютоновская и эволюционная парадигма в естествознание
Рефераты >> Естествознание >> Ньютоновская и эволюционная парадигма в естествознание

1.4. Границы применимости.

Вследствие развития физики в начале XX века определилась область применения классической механики: ее законы выполняются для движений, скорость которых много меньше скорости света. Было установлено, что с ростом скорости масса тела возрастает. Вообще законы классической механики Ньютона справедливы для случая инерциальных систем отсчета. В случае неинерциальных систем отсчета ситуация иная. При ускоренном движении неинерциальной системы координат относительно инерциальной системы первый закон Ньютона (закон инерции) в этой системе не имеет места, – свободные тела в ней будут с течением времени менять свою скорость движения.

Первое несоответствие в классической механике было выявлено, тогда когда был открыт микромир. В классической механике перемещения в пространстве и определение скорости изучались вне зависимости от того, каким образом эти перемещения реализовывались. Применительно к явлениям микромира подобная ситуация, как выявилось, невозможна принципиально. Здесь пространственно-временная локализация, лежащая в основе кинематики, возможна лишь для некоторых частных случаев, которые зависят от конкретных динамических условий движения. В макро масштабах использование кинематики вполне допустимо. Для микро масштабов, где главная роль принадлежит квантам, кинематика, изучающая движение вне зависимости от динамических условий, теряет смысл.

Для масштабов микромира и второй закон Ньютона оказался несостоятельным – он справедлив лишь для явлений большого масштаба. Выявилось, что попытки измерить какую-либо величину, характеризующую изучаемую систему, влечет за собой неконтролируемое изменение других величин, характеризующих данную систему: если предпринимается попытка установить положение в пространстве и времени, то это приводит к неконтролируемому изменению соответствующей сопряженной величины, которая определяет динамическое состояние системы. Так, невозможно точно измерить в одно и то же время две взаимно сопряженные величины. Чем точнее определяется значение одной величины, характеризующей систему, тем более неопределенным оказывается значение сопряженной ей величины. Это обстоятельство повлекло за собой существенное изменение взглядов на понимание природы вещей.

Несоответствие в классической механики исходило из того, что будущее в известном смысле полностью содержится в настоящем – этим и определяется возможность точного предвидения поведения системы в любой будущий момент времени. Такая возможность предлагает одновременное определение взаимно сопряженных величин. В области микромира это оказалось невозможным, что и вносит существенные изменения в понимание возможностей предвидения и взаимосвязи явлений природы: раз значение величин, характеризующих состояние системы в определенный момент времени, можно установить лишь с долей неопределенности, то исключается возможность точного предсказания значений этих величин в последующие моменты времени, т.е. можно лишь предсказать вероятность получения тех или иных величин.

Другое открытие пошатнувшее устои классической механики, было создания теории поля. Классическая механика пыталась свести все явления природы к силам, действующим между частицами вещества, – на этом основывалась концепция электрических жидкостей. В рамках этой концепции реальными были лишь субстанция и ее изменения – здесь важнейшим признавалось описание действия двух электрических зарядов с помощью относящихся к ним понятий. Описание же поля между этими зарядами, а не самих зарядов было весьма существенным для понимания действия зарядов. Вот простой пример нарушения третьего закона Ньютона в таких условиях: если заряженная частица удаляется от проводника, по которому течет ток, и соответственно вокруг него создано магнитное поле, то результирующая сила, действующая со стороны заряженной частицы на проводник с током в точности равна нулю.

Созданной новой реальности места в механической картине мира не было. В результате физика стала иметь дело с двумя реальностями – веществом и полем. Если классическая физика строилась на понятии вещества, то с выявлением новой реальности физическую картину мира приходилось пересматривать. Попытки объяснить электромагнитные явления с помощью эфира оказалось несостоятельными. Эфир экспериментально обнаружить не удалось. Это привело к созданию теории относительности, заставившей пересмотреть представления о пространстве и времени, характерные для классической физики. Таким образом, две концепции – теория квантов и теория относительности – стали фундаментом для новых физических концепций.

2. Современная модель эволюции Вселенной.

Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивист­ской теории тяготения, созданной Альбертом Эйнштейном в 1916 го­ду. В основе этой модели лежат два предположения: 1) свойства Все­ленной одинаковы во всех ее точках (однородность) и направления (изотропность); 2) наилучшим известным описанием гравитацион­ного поля являются уравнения Эйнштейна. Из этого следует так на­зываемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, — ре­лятивистская.

Важным пунктом данной модели является ее нестационар­ность. Это определяется двумя постулатами теории относительнос­ти: 1) принципом относительности, гласящим, что во всех инерцион­ных системах все законы сохраняются вне зависимости от того, с ка­кими скоростями, равномерно и прямолинейно движутся эти системы друг относительно друга; 2) экспериментально подтверж­денным постоянством скорости света.

Из принятия теории относительности вытекало в качестве следствия (первым это заметил петроградский физик и математик Александр Александрович Фридман в 1922 году), что искривленное пространство не может быть стационарным: оно должно или расши­ряться, или сжиматься. На этот вывод не было обращено внимания вплоть до открытия американским астрономом Эдвином Хабблом в 1929 году так называемого «красного смещения».

Красное смещение — это понижение частот электромагнит­ного излучения: в видимой части спектра линии смещаются к его красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, восприни­маемая нами частота колебаний уменьшается, а длина волны соот­ветственно увеличивается. При излучении происходит «покрасне­ние», т. е. линии спектра сдвигаются в сторону более длинных крас­ных волн.

Так вот, для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, т. е. о расширении Метагалактики — видимой части Вселенной.

Красное смещение надежно подтверждает теоретический вы­вод о нестационарности области нашей Вселенной с линейными разме­рами порядка нескольких миллиардов парсек на протяжении по мень­шей мере нескольких миллиардов лет. В то же время кривизна прост­ранства не может быть измерена, оставаясь теоретической гипотезой.


Страница: