Биохимические особенности обмена веществ в организме при занятиях спортивной гимнастикой
Рефераты >> Физкультура и спорт >> Биохимические особенности обмена веществ в организме при занятиях спортивной гимнастикой

При более длительной интенсивной работе всё в большей степени используется гликолиз. Интенсивная работа длительностью более 5-10 сек. всегда сопровождается повышением содержания молочной железы в крови, образующейся в мышцах в результат быстрого протекающего процесса гликолиза. Наибольших величин оно достигает при выполнении упражнений максимальной и субмаксимальной интенсивности. (бег на 100, 200, 400м).

При выполнении упражнений средней и умеренной интенсивности, но большей длительности ресинтеза АТФ за счёт креатинфосфата и гликолиза имеет место лишь в начале работы, а затем постепенно сменяется дыхательным фосфорилированием. Содержание молочной кислоты в крови, повысившееся в начале работы, по мере её продолжения постепенно снижается, а к кону работы может достигать даже нормально уровня, так как молочная кислота в процессе подвергает аэробному окислению до углекислоты и воды, а частично используется для ресинтеза углеводов.

При работе различной интенсивности и длительности в качестве субстратов, окисляемых дл ресинтеза АТФ, используются различные вещества в зависимости от степени снабжения организма кислородом. В условиях аэробного гликолитического ресинтеза АТФ расщепляется преимущественно находящийся в мышцах гликоген, содержание которого по мере продолжения работы снижается. Свободная глюкоза, приносимая к мышцам кровью, используется при этом мало. Для вовлечения в процесс гликолиза требуется её фосфорилирование, происходящее с участием АТФ. Содержание АТФ, расходуемое на энергетическое обеспечение мышечных сокращений, в этих условиях снижено. Расходование же гликогена в этих условиях происходит без затруднений, так как для образования из него гексозофосфорных эфиров требуется неограниченная фосфорная кислота, содержание которой в мышцах даже повышенно вследствие расщепления АТФ.

4. Биохимические изменения в организме при отдыхе

В период отдыха ликвидируются те биохимические изменения в мышцах и других органах и тканях организма, которые были вызваны мышечной деятельностью.

Мышечная деятельность как процесс, требующий определённой затраты энергии, сопровождается расщеплением АТФ, химическая энергия которой преобразуется в механическую энергию мышечных сокращений.

Во время мышечной деятельности для ресинтеза АТФ интенсивно расходуются различные вещества; в мышцах - креатинфосфат, гликоген, жирные кислоты, кетоновые тела; в печени происходит расщепление гликогена с образованием сахара, переносимого кровью к рабочим мышцам, сердцу и головному мозгу; усиленно расщепляются жирные кислоты и т.д.

Мышечная деятельность сопровождается увеличением активности ряда ферментов, катализирующих реакции обмена веществ; возрастает активность аденозинтрифосфатазы, фосфорилазы, гексокиназы, различных дегидрогеназ, цитохромоксидазы, протеиназ и липаз; интенсивнее протекают гликолиз и аэробное окисление.

При утомлении возможно снижение активности ряда ферментов, но в период отдыха она не только быстро восстанавливается, но и может превосходить исходный, дорабочий уровень; при тяжелом утомлении активность ферментов долгое время остается сниженной.

Период отдыха характеризуется высокой интенсивностью аэробного окисления и дыхательного фосфорилирования, которое дают энергию для активно идущих пластических процессов. Потребление кислорода в период отдыха после интенсивной мышечной деятельности всегда повышенно. В зависимости от общей направленности биохимических сдвигов в организме и времени, необходимого для их возвращения к норме, выделяются два типа восстановительных процессов – срочное и отставленное восстановление.

Срочное восстановление распространяется на первые 0,5 – 1,5 часа отдыха после работы; оно сводиться к устранению накопившихся за время упражнения продуктов анаэробного распада и к оплате образовавшегося О2-долга.

Отставленное восстановление распространяется на многие часы отдыха после работы. Оно заключается в усиливающихся процесса пластического обмена и в реставрации нарушенного во время упражнения ионного и эндокринного равновесия в организме. В период отставленного восстановления завершается возвращение к норме энергетических запасов организма, усиливается синтез разрушенных при работе структурных и ферментных белков.

Наступающая во время отдыха активация ферментных систем аэробного окисления является следствие биохимических изменений, которые происходят в работающих мышцах.

Исследования показали, что интенсивность восстановления и величина и длительность фазы сверхвосстановления зависят от интенсивности процессов расщепления. Чем интенсивнее расходование, тем быстрее идёт ресинтез и тем значительнее выражены явления сверхвосстановления. Исходя из этого, после упражнений максимальной и субмаксимальной мощности процессы биохимической реституции будут протекать быстрее, чем после более длительных упражнений средней и умеренной мощности. После очень длительной работы (марафонский бег, лыжные гонки на 50км) процессы биохимической реституции протекают особенно долго; повышенная потребность в кислороде и усиленное его потребление могут быть в течение двух суток после выступления спортсмена в соревнованиях.

Восстановление нормального содержания различных веществ, расходуемых во время работы, происходит в разное время. Прежде всего, из крови и мышц устраняется избыток молочной кислоты, затем происходит ресинтез креатинфосфата, далее – гликогена, и наконец, белков (после 15-минутнй интенсивной работы содержание креатинфосфата в мышцах животных восстанавливается через 30-45 мин., гликогена через 1 час, а белков через 6 часов. В ресинтезе этих веществ принимает участие АТФ. Поэтому энергично ресинтезируемая в период отдыха АТФ все время тратится, и восстановление е нормального уровня в мышцах происходит в последнюю очередь.

Такой порядок восстановления нормальных биологических соотношений в период отдыха является важной биологической закономерностью и имеет практическое значение в процессе спортивной тренировки. В биохимии спорта он получил название принципа гетерохронности, биохимической реституции.

В различных органах процессы биохимической реституции происходят также неодновременно. Так, нормальное содержание гликогена, прежде всего, восстанавливается в головном мозгу, затем в миокарде, ещё позднее – в скелетных мышцах и, наконец, в печени. Ресинтез гликогена в мозгу, миокарде и скелетных мышцах может происходить за счёт внутренних ресурсов организма путём образования во время работы молочной кислоты или путём перераспределения углеводов в организме. В последнем случае расщепление гликогена печени продолжается и во время отдыха, а поступающий в кровь сахар задерживается головным мозгом, миокардом и скелетными мышцами и используется для ресинтеза гликогена.

Существенное влияние на процессы биохимической реституции оказывает нервная система, в частности её симпатическая часть. Если с помощью ряда фармакологических веществ (симпатолитина, гексония, эрготоксина) снять это влияние, резко замедлится, станет неполноценным процесс реституции и снизится величина суперкомпенсации гликогена, креатинфосфата и ряда других химических ингредиентов мышцы.


Страница: