Гены-маркеры предрасположенности к скоростно-силовым видам спорта
Рефераты >> Физкультура и спорт >> Гены-маркеры предрасположенности к скоростно-силовым видам спорта

Наличие генотипа ХХ у спортсменов свидетельствует об отсутствии у них структурного белка a-актинина-3 в быстросокращающихся мышечных волокнах. Этот факт существенно снижает показатели скоростно-силовой работы и ограничивает возможности достижения высоких результатов в скоростно-силовых видах спорта. Выявленная в результате исследования сравнительно невысокая частота генотипа ХХ гена АСТN3 у спортсменов указывает на естественный спортивный отбор в процессе многолетней подготовки спортсменов.

Таким образом, высоких спортивных результатов в скоростно-силовых видах спорта добиваются спортсмены, имеющие генотипы RR и RX гена ACTN3, тогда как спортсмены с генотипом ХХ будут существенно ограничены в достижении высоких спортивных результатов. Следовательно, тестирование RR аллеля гена АСТN3, равно как и анализ на наличие генотипа ХХ гена АСТN3, уже сегодня можно рекомендовать в качестве прогностического теста на выявление предрасположенности к скоростно -силовой работе.

Вторым изученным у спортсменов геном был ген аденозин-монофосфат дезаминазы (АМФД). Известно, что существует три изоформы АМФД: изоформа М (мышечная, ген АМФД1), изоформа L (печеночная, ген АМФД2), изоформа Е (эритроцитарная, АМФД3). Изоформы АМФД различаются молекулярной массой, иммунологическими, каталитическими и регуляторными свойствами. По данным иммунофлюоресцентного анализа изоформа М АМФД локализована в быстросокращающихся мышечных волокнах скелетных мышц. Эта изоформа АМФД кодируется геном АМРД1, локализованным в коротком плече первой хромосомы (1p13.1).

Результаты анализа активности АМФД в скелетных мышцах показали, что индивидуумы, имеющие пониженную активность фермента, испытывают слабость, быструю утомляемость или мышечные судороги даже после средней по интенсивности физической нагрузки. Недостаток фермента в скелетных мышцах является одной из наиболее распространенных причин метаболической и вызванной физическими упражнениями миопатий у человека. Причиной такого недостатка АМФД у человека является однонуклеотидная замена цитозина на тимин в 34-м нуклеотиде кодирующей последовательности, которая находится во втором экзоне. В результате этого глутаминовый кодон превращается в стоп-кодон и прекращается синтез полипептидной цепи. Нуклеотидная форма записи этой мутации - С34Т, а форма записи мутации с использованием однобуквенного аминокислотого кода - Q12X. В случае присутствия в последовательности гена этой точечной мутации происходит терминация цепи белка и продукт становится каталитически неактивным. Это определяет существование полиморфизма гена АМРД1. Методами молекулярной биологии можно проанализировать ДНК на наличие С34Т полиморфизма в гене АМРД1 и выявить три генотипа: СС - гомозиготы по нормальному аллелю, СТ - гетерозиготы, ТТ - гомозиготы по мутантному аллелю. Результаты анализа полиморфизма С34Т в гене АМPД1 показали, что среди обследованных спортсменов 75% принадлежали к генотипу СС, 22,6% являлись носителями гетерозигот СТ и лишь у 2 человек была выявлена принадлежность к мутантному аллелю-ТТ. Спортсмены, принадлежащие к генотипу СС, доминируют в тяжелой атлетике (92%), в борьбе (92%) и гребле (70%). Спортсмены, принадлежащие к гетерозиготному генотипу СТ, в большей степени представлены среди боксеров (36%) и конькобежцев (36%). Наконец, спортсмены, принадлежащие к мутантному генотипу ТТ, обнаружены (по одному человеку) только среди гребцов и тяжелоатлетов. Наличие генотипа ТТ у спортсменов свидетельствует о низкой активности фермента АМФД в быстросокращающихся мышечных волокнах и будет ограничивать рост спортивных результатов в избранном спортсменами виде спорта. Следует отметить, что такое небольшое количество спортсменов с наличием принадлежности к мутантному аллелю гена АМРД1 свидетельствует о весьма эффективном отборе для занятий такими скоростно-силовыми видами спорта.

Третьим изученным у спортсменов геном был ген ангиотензин превращающего фермента (ACE). Это ключевой фермент ренин-ангиотензиновой системы - важнейшего гуморального регулятора артериального давления. ACE катализирует превращение ангиотензина I в ангиотензин II - наиболее активный сосудосуживающий гормон, кроме того ACE способен катализировать деградацию брадикинина - важнейшего сосудорасширяющего гормона. Ген ACE локализован в 17-й хромосоме, локус q23. Структурный полиморфизм гена ACE носит название инсерционно-делеционного (I/D) и заключается в наличии (insertion) или отсутствии (deletion) фрагмента ДНК длиной 287 пар нуклеотидов в 16-м интроне. Применение реакции ПЦР позволяет выявить в гене ACE три генотипа: II-гомозиготы по I-аллелю, ID-гетерозиготы, DD-гомозиготы по D-аллелю. Существует тесная связь между генотипом ACE и активностью фермента, который регулирует содержание ангиотензина II. Этот гормон не только регулирует состояние гемодинамики человека, но и как фактор роста усиливает синтез структурных белков в клетках миокарда, что приводит к гипертрофии сердечной мышцы.

На основе анализа полиморфизма гена ACE популяция обследуемых может быть распределена на три группы: носители генотипа II, генотипа ID и генотипа DD. В начале работы с геном ACE было проведено сравнение генотипов среди жителей Санкт-Петербурга и спортсменов. Результаты анализа частоты распределения по генотипам среди жителей города (16% - II, 51% - ID, 33% - DD) и спортсменов (14% - II, 39% - ID, 47% - DD) были весьма близки. В то же время в группе спортсменов можно отметить увеличение частоты встречаемости гомозигот генотипа DD, которое произошло за счет снижения количества генотипа гетерозигот ID. Анализ распределения генотипов гена ACE среди спортсменов, специализирующихся в различных скоростно-силовых видах спорта и видах спорта с длительной физической нагрузкой, позволил выявить существенные различия в частоте I- и D-аллелей. Так, у представителей скоростно-силовых видов спорта частота D-аллеля составила 0,72, а I-аллеля - 0,28. У спортсменов, выполняющих длительную физическую работу, это соотношение было изменено и частота I-аллеля была 0,63, а D-аллеля - 0,37 [6].

Таким образом, полученные результаты доказывают наличие достоверной корреляции развития определенных физических качеств с различными генотипами гена ACE. Спортсмены, имеющие генотип DD гена ACE, в большей степени предрасположены к развитию скоростно-силовых физических качеств. Носители другого генотипа - II, напротив, в большей степени предрасположены к выполнению длительной физической работы [4]. Следовательно, тестирование X-аллеля гена ACTN3, равно как и анализ на наличие T-аллеля гена AMPD1, наряду с определением DD генотипа гена ACE уже сегодня можно рекомендовать в качестве прогностического теста на выявление генетической предрасположенности к развитию и проявлению у спортсмена скоростно-силовых физических качеств.

На основании результатов настоящего исследования впервые получена развернутая картина генетической предрасположенности человека к выполнению скоростно -силовой физической работы и определен спектр генов, которые могут быть использованы в диагностическом комплексе для отбора в скоростно-силовые виды спорта. Использование полученных данных в практической работе тренеров позволит повысить результативность спортивного отбора и сохранит здоровье спортсменов при реализации учебно-тренировочной программы подготовки и в стрессовых ситуациях, с которыми сопряжены занятия спортом.


Страница: