Биокерамика на основе фосфатов кальция
Рефераты >> Химия >> Биокерамика на основе фосфатов кальция

Полагают, что протеины могут инициировать минерализацию и регулировать скорость роста кристаллов минеральной фазы [361]. Одни и те же протеины могут, как инициировать, так и ингибировать процессы минерализации, в зависимости от внешних факторов. В работе [362] показано, что макромолекулы, ингибирующие рост кристаллов в растворе, могут сами по себе служить подложкой для ориентированной нуклеации выделения новой минеральной фазы. Способствовать минерализации могут различные неколлагеновые протеины, иммобилизованные ковалентными связями к подложке. Влияние адсорбции протеинов на процесс нуклеации минеральной фазы - комплексное. Поскольку способность поверхности керамики к нуклеации осаждения минеральной фазы взаимосвязана с величиной поверхностной энергии, то эффективность поверхности с высокой способностью к нуклеации в не содержащей протеинов среде может быть снижена в результате адсорбции протеинов, понижающих поверхностную энергию на границе керамика - жидкость. Понижение поверхностной энергии на границе кристаллизующаяся фаза - жидкость всегда способствует зародышеобразованию новой фазы. Важное значение для процесса образование центров кристаллизации имеет также кристаллографическое соответствие материала подложки и кристаллизующейся фазы. Протеины могут тормозить процесс минерализации в результате их адсорбции на центрах выделения новой фазы, не достигших критического размера [363]. При малой концентрации протеинов в жидкости частота образования центров высока, а эффект ингибирования роста центров мал. С повышением концентрации протеинов их ингибирующее действие на минерализацию возрастает [363].

Исследованиями in vivo доказано, что фосфатно-кальциевая керамика сама по себе влияет на клеточную активность. В экспериментах с использованием пористой керамики и клеток костного мозга продемонстрировано, что дифференцировка клеток активируется при их культивировании в пористом каркасе из КГА. В сравнении с пористым титаном, формирование новой костной ткани на керамике происходило существенно быстрее, то есть фосфат кальция сам по себе стимулирует остеогенетический потенциал плюрипотенциальных клеток [356].

На активность фосфатно-кальциевой керамики влияет ее состав. Известна повышенная активность к минерализации кремний-содержащих гидроксиапатитов, что связывают с образованием на их поверхности силанольных групп, эффективных для нуклеации осаждения минеральной фазы. Силанольные группы образуют связи с ионами кальция, способствуя формированию аморфного фосфата кальция - прекурсора кристаллизации Са-дефицитного карбонат-содержащего гидроксиапатита.

Возвращаясь к началу изложения материала данной книги, хотелось бы привести мнение авторов работы [364] об идеальном керамическом матриксе для регенерации трабекулярной костной ткани, основанной на принципах инженерии костной ткани. Такой матрикс должен обеспечивать формирование внеклеточного минерализуемого матрикса, являясь трехмерной структурой, обеспечивающей прикрепление, размножение, миграцию и функционирование остеообразующих клеток. Требования к материалу матрикса:

- биологическая совместимость;

- наличие взаимосвязанных пор достаточного размера для проникновения клеток, прорастания ткани, васкуляризации и подачи питательной среды;

- остеокондуктивность, отсутствие образования рубцовой соединительной ткани;

- морфология поверхности, способствующая прикреплению клеток, адсорбции метаболитов;

- положительное влияние на гены клеток для направленной их дифференцировки;

- кинетика биологической резорбции, совместимая с кинетикой образования новой костной ткани, с нетоксичными и легко выводимыми из организма продуктами резорбции;

- технологичность;

- достаточные механические свойства для обеспечения несущей способности в переходной период.

Последние достижения в области химии, материаловедения и технологии материалов на основе фосфатов кальция, а также результаты их биологических исследований, позволяют сделать весьма оптимистичные прогнозы о возможности существенного прорыва в решении проблемы регенерации костных тканей при использовании таких материалов.

Заключение

Успехи химии, технологии и материаловедения фосфатов кальция явились основой для создания широкого спектра новых материалов медицинского назначения, начиная от порошков и гранул до композиционных материалов и сложных по структуре матриксов для клеточных технологий реконструкции тканевых дефектов. Возможно, самым очевидным является применение фосфатов кальция в стоматологии. Зубные пасты, содержащие тонкие порошки ГА в качестве наполнителя, обладают выраженными отбеливающими свойствами [365]. Доказано, что такие пасты обладают профилактическим антикариесным действием, снижают гиперчувствительность и способствуют лечению пародонтита. В результате клинических испытаний установлено, что отбеливающая способность ГА-содержащих паст не связана с эффектом полирования поверхности эмали, а обусловлена ее реминерализацией в результате химического взаимодействия, приводящей к сглаживанию поверхности эмали.

Изучение закономерностей формирования фосфатно-кальциевых фаз in situ при физиологических условиях полости рта явилось основой создания эффективных методов лечения очаговой деминерализации зубных тканей, особенно на начальных стадиях процесса (образование белого пятна, ранний кариес). Проведение реакции синтеза непосредственно на поверхности зуба может приводить к осаждению ДКФД или ОГА. В первом случаеДКФД легко получить методом химического осаждения из растворов солей кальция и ортофосфорной кислоты, причем по времени ДКФД переходит в ГА с выделением ортофосфорной кислоты. Существенным ограничением на возможность практического проведения реакции осаждения ОГА в полости рта является необходимость использования щелочных исходных ингредиентов как источников гидрокси-групп. Несмотря на то, что среда с рН больше 7 оказывает антибактериальное действие на флору, щелочные компоненты могут вызвать неприятные ощущения (аммиак), ожоги или даже некроз тканей. Для повышения устойчивости к кариесу, может в принципе быть осуществлен синтез in situ фторсодержащих реминерализующих фаз.

Порошки, в том числе ультрадисперсные, и гранулы ГА, ТКФ и бифазных ГА-ТКФ материалов могут использоваться для лечения периодонтитов и заполнения различных полостей костных тканей [366,367]. Они являются исходным материалом на нанесения биоактивных покрытий на металлические имплантаты, а также для изготовления различных композиционных материалов.

Следует отметить, что существует определенная опасность применения нанодисперсных порошков ГА в организме. Исследованиями in vivo показано существование летальной дозы введения порошков внутривенно; летальный исход связывают с закупоркой капилляров, однако рекомендовано использование золя в дозах не выше 1/6 от летальной в качестве носителя (адъюванта) лекарственных препаратов при внутривенных инъекциях [368].

Диапазон потенциальных применений пористых ГА-гранул весьма широк: от материала для напыления покрытий плазменным методом, до средств локализованной доставки лекарственных препаратов в организм человека и даже в качестве офтальмологических протезов [369]. Не только пористая керамика, но даже и упорядоченное трехмерное расположение несвязанных взаимно пористых гранул может служить матриксом для формирования новой костной ткани [370]. Лекарственные препараты могут быть введены в пористые гранулы методом пропитки под вакуумом. Вследствие капиллярных сил, фармокинетика выделения лекарственных препаратов характеризуется существенной пролонгированностью. Такие системы доставки препаратов могут применяться, например, при локализованном лечении остеомиелитов.


Страница: