Железоуглеродистые сплавы - фазовое и структурное состояние
Рефераты >> Химия >> Железоуглеродистые сплавы - фазовое и структурное состояние

Фазовые состояния железоуглеродистых сплавов, в зависимости от состава и температуры, описываются диаграммами стабильного и метастабильного равновесия. Термодинамический анализ показывает, что наиболее стабильной системой, образованной двумя компонентами: железом и углеродом, является система железо – графит. Метастабильной является система железо – цементит.

Диаграмма железо – графит построена в условиях очень медленного нагрева и охлаждения (доли градуса в минуту). Диаграмма железо – цементит строится в условиях более высоких скоростей нагрева и охлаждения (порядка нескольких градусов в минуту).

Диаграммы позволяют описать как фазовый состав, так и структуру сплава. В этом случае диаграммы называют, соответственно, фазовой или структурной. Часто обозначения фазового и структурного состава сплавов объединяют.

Характеристика фазовых и структурных составляющих железоуглеродистых сплавов

В соответствии с ранее данными определениями фазовой и структурной составляющих системы, в системе железо-углерод к фазовым составляющим относятся: жидкий раствор (L), твердые растворы: феррит (α), аустенит (γ) , высокотемпературный феррит (δ), а также цементит и графит (Г).

Жидкий раствор в системе железо-углерод представляет собой раствор углерода в расплавленном железе. При температурах значительно выше линии ликвидус (преимущественно выше 1700˚С) жидкость является статистически неупорядоченным раствором со статистически плотной упаковкой. При небольшом перегреве выше линии ликвидус жидкий раствор имеет сравнительно регулярное строение. Жидкий раствор, образовавшийся при плавлении δ-феррита (до 0,51% углерода), сохраняет ближний порядок по ОЦК-решетке δ-железа. Жидкий раствор, образующийся при плавлении аустенита, имеет ближний порядок, соответствующий ГЦК-решетке γ -железа.

Феррит – это твердый раствор внедрения углерода в α-железе. Решетка феррита – объемно-центрированный куб с расположением атомов углерода в сравнительно небольших октаэдрических пустотах решетки, сильно искажающим ее. Растворимость углерода в феррите невелика.

При температуре 727 ˚С в феррите растворяется 0,02% С; при понижении температуры растворимость уменьшается, достигая величины 0,006%С при комнатной температуре. Структура феррита представляет собой сравнительно равноосные полиэдрические кристаллы, разделенные между собой тонкими высокоугловыми границами. Выявляется обычно структура феррита при травлении растворами азотной кислоты.

Феррит до температуры точки Кюри (770˚С) сильно ферромагнитен, хорошо проводит тепло и электрический ток. В равновесном состоянии феррит пластичен (относительное удлинение порядка 40%), имеет небольшую прочность и твердость (HB = 65 - I30, в зависимости от величины зерна).

Феррит, в зависимости от характера протекающих фазовых превращений, в структуре железоуглеродистых сплавов может находиться в виде различных структурных состояний: феррит, как основа структуры сплава (Ф); феррит, как вторая (избыточная) фаза, располагающаяся по границам перлитных колоний, в виде отдельных включений равноосной или игольчатой формы; феррит, входящий в качестве фазы в состав другой структурной составляющей – перлита или феррито-графитного эвтектоида.

При температурах выше критической точки А4 стабильной становится модификация высокотемпературного δ–феррита, имеющего, как и низкотемпературный α–феррит, объемно-центрированную кубическую решетку, но с большими по сравнению с ним параметрами. δ -феррит парамагнитен.

Аустенит – твердый раствор внедрения углерода в γ-железе. Решетка аустенита – гранецентрированный куб (ГЦК). Атомы углерода располагаются в крупных октаэдрических пустотах решетки.

Растворимость углерода в аустените значительно больше, чем в феррите: 2,03 и 2,14% при температурах эвтектического превращения, соответственно, в стабильной и метастабильной системе. При понижении температуры растворимость уменьшается до 0,69 и 0,80% в упомянутых системах, что соответствует температурам эвтектоидного превращения в той и другой системах.

Аустенит в структуре выявляется так же, как и феррит в виде сравнительно равноосных полиэдров, но отличается от него значительным количеством двойников в теле зерна. Аустенит – парамагнитная составляющая во всем температурном интервале его существования. Аустенит мягок, хотя тверже феррита (HB = 200-250). Он пластичен (относительное удлинение 40-50% и выше). Превращение феррита и феррито-цементитной смеси в аустенит сопровождается уменьшением объема.

Структурное состояние аустенита (А) в железоуглеродистых сплавах аналогично ферриту: он может быть единственной структурной составляющей в сплаве; составлять основу сплава; входить в него, как остаточный аустенит; содержаться в виде фазовой составляющей в составе более сложной структурной составляющей – эвтектической аустенито-цементитной смеси (ледебурита), существующей при температурах выше эвтектоидной линии на диаграмме железо-углерод.

Цементит – метастабильное соединение железа с углеродом, соответствующее формуле Fe3C. Цементит имеет сложную орторомбическую решетку, основа которой представляет собой трехгранную, слегка искаженную призму, образованную шестью атомами железа. Часть атомов железа имеет 11 соседних атомов железа, а часть – 12. Пустоты заполняются атомами углерода. В этом структура цементита близка по своему строению к структуре аустенита, а также к плотнейшей гексагональной модификации ε – железа.

Цементит – соединение практически постоянного состава. Растворимость железа в цементите имеет место, но ее величина очень мала, и практически незначима. Цементит при повышении температуры сравнительно легко разлагается на железо (аустенит или феррит) и графит. Это свойство цементита лежит в основе явления графитизации, и используется для получения серых и ковких чугунов. Цементит хрупок, очень тверд (НВ около 800), слабо магнитен до температуры 210˚С. Выше этой температуры цементит парамагнитен.

Структурное состояние цементита определяется, в основном, типом превращения, при котором он образуется. Различают первичный цементит (ЦI), который представляет собой крупные игольчатые кристаллы, образующиеся при кристаллизации непосредственно из жидкости в заэвтектическом белом чугуне. Вторичный цементит (ЦII) выделяется в заэвтектоидных сталях и доэвтектических чугунах, в основном, в виде сетки по границам зерен аустенита, а также в ряде случаев в виде равномерно распределенных по объему аустенитного зерна скоагулированных частиц или игл. Вторичный цементит – это избыточная фаза в железоуглеродистых сплавах, выделяющаяся из аустенита при охлаждении в результате уменьшения растворимости углерода в аустените при понижении температуры.

Выделение третичного цементита (ЦIII) характерно для технического железа и малоуглеродистой стали. Выделяется третичный цементит из феррита в результате уменьшения растворимости углерода в феррите с понижением температуры от 727˚С до комнатной температуры. Третичный цементит в структуре железа и малоуглеродистой стали в микроструктуре наблюдается в виде тонких прожилок по границам зерен феррита. Такие выделения третичного цементита охрупчивают железо и малоуглеродистые стали. Поэтому такие сплавы подвергают термической обработке с целью изменения структурного состояния третичного цементита. Желательное его положение в структуре сплава – равномерно рассредоточенные выделения в объеме ферритных зерен. Этого добиваются путем закалки и старения.


Страница: