Изучение основных свойств адсорбентов
Рефераты >> Химия >> Изучение основных свойств адсорбентов

R2lt~Kc4r'+\y/[r0(ry]

и критерий R уменьшается с увеличением сорбируемости при постоянном коэффициенте селективности колонки. Таким образом, в газоадсорбционной проявительной хроматографии нецелесообразно использовать очень сильные сорбенты.

6. Геометрическая структура адсорбентов

По геометрической структуре адсорбенты делят на 4 типа.

Непористые адсорбенты — графитированная сажа, аэросил (мелкодисперсный диоксид кремния), кристаллы солей. Такие адсорбенты либо наносят на твердые носители, либо из них формируют гранулы. Удельная поверхность адсорбентов этого типа колеблется от сотых долей до сотен м2/г;

Однородно-макропористые адсорбенты. Получают, например, обработкой силикагеля водяным паром при 700—800°С (гидротермальная обработка). При этом удельная поверхность уменьшается до 25—50 м2/г и получаются широкие поры порядка сотен нм;

Однородно-тонкопористые адсорбенты — молекулярные сита (цеолиты), так называемые углеродные молекулы сита (высокопористый углерод с поверхностью порядка тысячи м2/г);

Неоднородно-пористые адсорбенты, в частности силикагель, содержащие как широкие, так и узкие поры. Естественно, что они не могут быть успешно использованы в хроматографии без соответствующего модифицирования.

7. Природа адсорбента

Активные угли имеют поверхность 1000—1700 м2/г, поэтому силы взаимодействия их с молекулами разделяемых веществ очень велики, что ограничивает область применения этих адсорбентов анализом легких газов. Поскольку угли неполярны, удерживание оксида углерода меньше, чем метана, а этилена — меньше, чем этана.

Углеродные молекулярные сита, получаемые путем термодеструкции органических полимеров, в частности поливиннлиденхлорида, особенно четко проявляют свойства угольных адсорбентов.

На колонке с этими адсорбентами вода элюируется раньше метана, ацетилен раньше этилена и этана. Разделение легких газов (кислорода, азота, оксида углерода, метана и диоксида углерода) осуществляется при программировании температуры. Показана также возможность определения формальдегида, сероводорода, диоксида серы за время, измеряемое несколькими минутами.

Термическая сажа, графитированная при 3000 °С, имеет удельную поверхность'6—30 м2/г. Агрегаты соответствующего размера получают путем многократного потряхивания мелкодисперсного порошка. Будучи неполярным адсорбентом, сажа нечувствительна к полярности сорбата, однако способна по-разному адсорбировать пространственные изомеры. В работах показаны возможности разделения трансизомеров 1,4-метилциклогексанола, цис- и гранс-алкенов и алкадиенов (гранс-изомеры выгоднее располагаются на поверхности сажи и поэтому удерживаются сильнее), четырех геометрических изомеров 1,2,4,5-тетраметилциклогексана цис- и трансизомеров циклоалканов, эндобициклоалканов и алкенов, а также изомерных ксилолов, крезолов, диоксибензолов и т. д.

На поверхность гранул графитированной сажи часто наносят небольшие количества неподвижных жидкостей для получения модифицированных сорбентов требуемой селективности.

В качестве неполярного адсорбента может быть использована стандартная сажа марки ПМ-15. Было получено удовлетворительное разделение углеводородов, спиртов, эфиров и кислот. Поскольку сажа ПМ-15 (как и графитированная термическая сажа) отличается недостаточной механической прочностью, с целью устранения этого недостатка к навеске сажи добавляют раствор модификатора (высокотемпературного силоксанового полимера) с последующим перемешиванием и испарением растворителя. Модификатор обеспечивал не только увеличение механической прочности частиц, но также позволил улучшить эффективность колонки и сократить время анализа как неполярных, так и полярных соединений. В другом варианте предусмотрено нанесение пыли сажи ПМ-15 в смеси с раствором модификатора на инертный твердый носитель. При этом модификатор способствовал приклеиванию частиц сажи к поверхности носителя.

8. Силикагель и его адсорбционная активность

Силикагель представляет собой гель кремневой кислоты, адсорбционная активность которого в основном обусловлена находящимися на поверхности гидроксильными группами. Силикагели получают обычно, действуя на жидкое стекло хлороводородной или серной кислотой. Производимые силикагели различают по размерам пор и частиц: КСМ — крупный силикагель мелкопористый; АСМ —активированный силикагель мелкопористый; существуют также силикагели марок КСК, ШСК, МСК, АСК и др.

Поскольку силикагель является полярным, при анализе газов он сильнее взаимодействует с ненасыщенными соединениями, поэтому этилен элюируется после этана.

Макропористые силикагели, как уже указывалось, получают путем гидротермальной обработки. Затем для устранения оставшихся мелких пор проводят прокаливание до 900—1000 °С, и поскольку при этом поверхность сильно дегидратируется, следующим этапом является кипячение в воде для восстановления гидроксильных групп на поверхности.

Активный оксид алюминия получают из технического гидроксида алюминия обработкой его едким натром и осаждением азотной кислотой. Выпускаемый в настоящее время оксид алюминия представляет особую модификацию, которая при нагревании до 1000 °С переходит в неактивную форму. Как и силикагели, оксид алюминия является полярным адсорбентом и проявляет склонность к образованию водородных связей (вследствие наличия поверхностных гидроксильных групп) и взаимодействию с ненасыщенными соединениями.

Синтетические цеолиты (молекулярные сита) представляют собой кристаллы (структурная единица — кубоокта-эдр), состоящие из атомов кремния, алюминия, кислорода и одно- или двухвалентного металла, причем природа последнего определяет радиус пор и, следовательно, сорбционные свойства цеолита. Чаще всего в хроматографии используют цеолиты типа А, X и У. Диаметр пор молекулярных сит: КА(ЗА), NaA (4A), СаА (5А), СаХ (10Х), NaX (13X), измеряемый в А, близок к размерам, указанным в их обозначении (эффективный диаметр пор цеолитов СаХ и NaX несколько меньше — соответственно 8 и 9—10А). Путем ионного обмена можно получить молекулярные сита с самыми различными размерами пор. Наиболее широко в газовой хроматографии применяют сита 5А, с их помощью можно полностью разделить смесь кислорода, азота и других газов.

Интересно, что при 40 °С изобутан элюируется из колонки с молекулярным ситом 5А после метана, при 56 °С — между азотом и метаном, при 79 °С — между кислородом и азотом, а при 100 °С — одновременно с кислородом. При повышенной температуре на этом адсорбенте можно разделить и углеводороды до пропана включительно.

9. Недостатки цеолитов как адсорбентов

К недостаткам цеолитов как адсорбентов для газовой хроматографии относят их высокую влагоемкость (поэтому молекулярные сита являются очень хорошими осушителями) и способность взаимодействовать с кислотами и алюминием, в связи с чем нельзя применять для изготовления колонок алюминиевые трубки.

При температуре выше 650 °С изменяется структура и резко ухудшаются адсорбционные свойства цеолитов. Поэтому перед использованием рекомендуется прокаливать цеолит 5А 2 ч при 150—350 °С в вакууме или продувать водородом при 60 °С в течение трех суток. Согласно другим данным, цеолит 5А целесообразно активировать 2 ч при 400 °С с последующим охлаждением в эксикаторе или токе сухого водорода и выдерживать при 400—650 °С. Сорбционные свойства цеолитов регенерируют аналогичным образом.


Страница: