Исследование возможностей синтеза фенилселиконатов натрия, содержащих в своем составе атом кобальта
Рефераты >> Химия >> Исследование возможностей синтеза фенилселиконатов натрия, содержащих в своем составе атом кобальта

Оглавление

Введение

1. Литературный обзор

1.1 Методы синтеза полиметаллоорганосилоксанов

1.1.1 Взаимодействие органилсиланолятов щелочных металлов с хлоридами металлов

2. Обсуждение результатов

3. Экспериментальная часть

3.1 Синтез полифенилсилоксана (ПФС)

3.2 Синтез кристаллосольвата фенилсилантриолята натрия с ДМСО (ФСТН)

3.3 Синтез поликобальтфенилсилоксана

3.4 Взаимодействие поликобальтфенилсилоксана с гидроксидом натрия

3.5 Исследование взаимодействия поликобальтфенилсилоксана с фенилсилантриолятом натрия

3.6 Анализ мононатровой и тринатровой соли фенилтригидроксисилана на натрий

3.7 Определение кремния гравиметрическим методом

Выводы

Список литературы

Введение

Кремнийорганические полимеры, содержащие в своей структуре гетеросилоксановую группировку Si-O-Э (под символом Э подразумевается гетероатом, за исключением атомов водорода и углерода), носят название полигетеросилоксаны. Если элемент является металлом, они классифицируются как полиметаллоорганосилоксаны (ПМОС). Первые полученные в 50г ХХ века, исследования были доведены до промышленного внедрения [1].

Интерес к химии полигетеросилоксанов обусловлен специфическими свойствами и реакционной способностью силоксановой связи и группировки Si–O–M, спектр свойств которых достаточно широк. Ранее было показано, что полигетеросилоксаны, содержащие в своем составе d-элементы обладают высокой термостойкостью, а также выступают в качестве эффективных термостабилизаторов полидиметилсилоксанового каучука (СКТН) и катализаторов некоторых органических реакций [2-4]. Так же полиметаллоорганосилоксаны используются в качестве стойких антикоррозийных покрытий, защитных лаков, катализаторов в нефтеперерабатывающей промышленности [5].

Взаимодействие полиметаллофенилсилоксанов с электрофильными реагентами в частности с кислотами достаточно хорошо изучено.[8] Их взаимодействие с нуклеофильными реагентами практически не изучено. В то же время при взаимодействии полиметаллофенилсилоксанов (содержащих олово и германий органические фрагменты) с такими электрофильными реагентами как спирты, происходит образование мономерных функциональных гетеросилоксанов.

Целью данной работы является исследование возможности синтеза фенилсиликонатов натрия содержащих в своем составе атомы кобальта.

1. Литературный обзор

1.1 Методы синтеза полиметаллоорганосилоксанов

В данное время существует пять основных путей формирования гетеросилоксановой группировки: реакции гидролитической и гетерофункциональной поликонденсации, взаимодействие органилсиланолятов щелочных металлов с галогенидами металлов, расщепление силоксановой связи оксидами элементов и методом механохимической активации. Методы были описаны авторами в следующих работах. [1, 6-12]

1.1.1. Взаимодействие органилсиланолятов щелочных металлов с хлоридами металлов

Наиболее удобным в препаративном отношении и универсальным методом синтеза ПМОС является метод, основанный на взаимодействии хлоридов металлов с органилсиланолятами щелочных металлов [13-16]. Данный способ практически незаменим для получения ПМОС циклолинейного строения.

Данный метод образования полимеров отражен следующими схемами:

RSi(OH)2ONa+MYx→M[O(OH)2SiR]x+xNaY (1)

M[O(OH)2SiR]x→{[RSi(O)1.5MOx/2}+xH2O (2)

Методика получения ПМОС состоит из двух стадий: сначала при действии дозированного количества щелочи на органосилоксан получают органосиланолят, далее с помощью обменной реакции органосиланолята и галогенида поливалентного металла формируют металлосилоксановый фрагмент Si-O-M-O-Si, при этом металл "встраивается" в силоксановую цепь. Несмотря на кажущуюся простоту данных схем, соотношение кремния к металлу в получаемых полигетеросилоксанах часто отличается от исходного, они неоднородны по составу, что указывает на сложность процессов полимерообразования. Предложены методы синтеза в водно-органических средах: в этом случае соотношение кремния к металлу в полимерах зачастую сильно завышены относительно исходного и они неоднородны по составу [14,17].

По мнению ряда других авторов при проведении процесса в водно-органических средах преобладающее влияние оказывает гидролиз исходных соединений: реакция по своему характеру мало чем отличается от согидролиза [18].

Методом, основанным на взаимодействии хлоридов металлов с мононатровыми солями органилсилантриолов в безводной среде удается достигнуть значительно лучших результатов. При проведении процесса в среде инертного растворителя, выход полимера значительно улучшается в присутствии бутилового спирта, вероятно вследствие гомогенизации системы [18]. Но данный способ является технологически более трудоемким из-за трудностей получения безводных хлоридов металлов. Однако и в этом случае в реакционной системе будет содержаться некоторое количество воды [19].

Для исключения влияния побочных процессов был предложен новый метод получения ПМОС в среде диметилсульфоксида (ДМСО), который эффективнее чем вода сольватирует ионы металлов [20]. Насыщая координационную сферу металла, ДМСО препятствует протеканию нежелательных побочных процессов, что приводит к получению ПМОС более регулярного строения. Предложенный метод не требует использования в синтезе ПМОС безводных галогенидов металлов и абсолютных растворителей. В полученных полимерах сохраняются соотношения кремния к металлу и они практически однородны по составу.

Метод получения каркасных и полимерных металлоорганосилоксанов, в котором использовали для синтеза полиметаллоорганосилоксанов не силаноляты натрия, полученные щелочным расщеплением предварительно синтезированных полиорганосилоксанов, а мономерные органотриалкоксисиланы предложен авторами [21]. Суть метода заключается в том, что органотриалкоксисилан обрабатывают водно-метанольным раствором едкого натра, причем количество воды должно обеспечивать полный гидролиз алкоксигрупп.

2. Обсуждение результатов

Нами было проведено исследование взаимодействия поликобальтфенилсилоксана по следующей схеме:

(PhSiO1,2)2CoO + 2NaOH → [PhSi(O)O0,5NaCoO]n + H2O (3)

Схема взаимодействия предполагает образование продуктов циклического или олигомерного характера.

Синтез осуществлен в условиях аналогичных для синтеза мононатровой соли фенилсилантриола в водно-ацетоновой среде. Исходный поликобальтфенилсилоксан был синтезирован по раннее описанной методике в присутствии диметилсульфоксида.[20] В результате синтеза наряду с полимерными продуктами были выделены белое кристаллическое вещество, состав которого отвечает финилсилантриоляту натрия: PhSi(ONa)3 × 6,5H2O, ИК-спектр представлен на рисунке 1.

Рис.1 синтезирование полифенилсилоксан натрий гравиметрический

В ИК-спектре соединения в области 1100 см-1 поглощение имеет относительно простую колебательную структуру, что указывает на мономерный характер полученного соединения. В этой области отсутствуют максимумы поглощения которые соответствовали бы колебаниям связи Si-O в циклических и олигомерных продуктах. Присутствует лишь полоса поглощения при 1130 см-1, 1430 см-1(характеристическая полоса для связи Si-Ph) и 1600 см-1, триплет в области 3100 см-1 отвечает колебаниям связи C-H в алифатическом радикале. Выход фенилсилантриолята натрия составил 80 % от теоретически возможного. Таким образом взаимодействие протекает не согласно предполагаемой схеме реакции, а по следующей схеме:


Страница: