Исследование концентрирования Cu (II) на анионите АВ-17, иммобилизованном 8-оксихинолином
Рефераты >> Химия >> Исследование концентрирования Cu (II) на анионите АВ-17, иммобилизованном 8-оксихинолином

Для извлечения ионов тяжелых металлов из воды пригоден сорбент, получаемый осаждением гидроксидов алюминия и железа из сульфатных растворов на активированный уголь в присутствии коагулянтов на основе поли-акридамида. Модификаторы и носитель находятся в сорбенте в массовом соотношении А1(ОН)3: Fe(OH)3: уголь = 1:4:5 сорбента по урану равна 266 мг г "\ Для концентрирования микроэлементов из морской воды используют сорбенты на основе гидроксидов Al, Fe(ITI) и Мп(П), нанесенных на сополимер стирола и дивинилбензола с различной степенью сшивки степень концентрирования металлов зависит от толщины гидроксидной пленки и пористости носителя. Сорбент пригоден для сорбции в динамических условиях.

Очистку растворов от водорастворимых соединений мышьяка осуществляют их сорбцией на гидроксиде железа(Ш), нанесенном на различные подложки. Такой способ обеспечивает извлечение следовых количеств мышьяковой и мышьяковистой кислот, органических арсенокислот и их производных. Избирательными по отношению к фосфат- и фторид-ионам являются композиционные сорбенты, которые получают нанесением гидроксидов титана(1У) и циркония(1У) на активированный уголь марки БАУ. В равных условиях 1 г такого сорбента поглощает в 2.4 раза больше фосфат-ионов, чем

1 г гранулированного гидроксида титана. Сорбент сохраняет высокую емкость по отношению к фосфат-ионам в нейтральной и слабощелочной средах. Для извлечения ионов меди из промывных вод, содержащих аммиак, предложен сорбент [39], который представляет собой тонкий слой оксида железа, нанесенного на песок.

Для концентрирования ионов металлов из морской воды и промышленных сточных вод используют сорбент в виде диспергированных гидроксидов, оксидов или сульфидов металлов, или тех же веществ, осажденных или внедренных в органический или неорганический пористый носитель (органические полимеры, цеолиты, молекулярные сита). В качестве примера в патенте описан синтез сорбента на основе гидроксида цинка и органического носителя. Предложены способы получения композитного сорбента для извлечения ионов тяжелых металлов из морской или сточных вод. Основу сорбента составляет пористый носитель, например, органический полимерный гель, в который вводят тонкодисперсные оксиды или гидроксиды алюминия, железа, марганца, титана или других металлов. Количество вводимого неорганического реагента превышает 0,1 моль на 1 л геля. Описано, например, получение композитных сорбентов на основе полиакриламида и гидроксидов названных металлов. Установлена обменная емкость сорбентов по отношению к ионам Cu(II), Ni(II), Hg(II), Cr(III) и других тяжелых металлов. Отличительными особенностями композитных адсорбентов являются их высокая устойчивость, хорошие адсорбционные характеристики, а также легкое отделение в отвалы.

Описана технология модификации неорганических сорбционных материалов типа гидроксидов или нерастворимых солей многозарядных ионов металлов на пористых носителях — угле, активном иле и опилках. Такие сорбенты можно использовать для очистки сточных вод электрохимических производств от ионов цветных металлов.

Для извлечения тяжелых металлов из морской воды пригодны адсорбенты на основе активированного угля, поливинилацетатного полимера или волокнистого нетканого материала, обработанных гидрозолем титановой кислоты (концентрация 5-10"3 М., размер коллоидных частиц 1-100 мкм).

В некоторых работах рассмотрены сорбционные свойства и устойчивость титансодержащих сорбентов на носителе из древесных опилок. Изучена кинетика пептизации слоя гидроксида титана на древесине в воде и высказаны предположения о природе связи сорбционного материала с носителем.

Анализ литературных данных показывает, что новое научное направление, связанное с применением в химическом анализе реагентов, иммобилизованных на поверхности различных носителей, является весьма перспективным. Такие реагенты повышают чувствительность и избирательность определения многих элементов.

Снижение предела обнаружения достигается концентрированием определяемых ингредиентов из относительно большого объема раствора в фазе сорбента. В отличие от экстракционного концентрирования, сорбционные методы не требуют использования органических растворителей, а потому безопасны для здоровья. Сами сорбенты нетоксичны и хорошо отделяются от раствора фильтрованием, что делает анализ более экспрессным. Улучшение избирательности обусловлено тем, что при иммобилизации органические реагенты благодаря геометрическим особенностям закрепления лиганда на поверхности носителя в ряде случаев изменяют свои комплексо-образующиеся свойства, например дентатность. Можно полагать, что модифицированные сорбенты наиболее эффективно извлекают ионы металлов, которые образуют с иммобилизованным реагентом ионные ассоциаты или комплексы с соотношением металл: лиганд, равным 1:1. В этом случае сводятся к минимуму стерические затруднения, обусловленные фиксацией ли-ганда на поверхности сорбента.

Дальнейшее развитие этого направления аналитической химии требует установления химизма процессов иммобилизации реагентов на поверхности твердых постелей. В настоящее время реагенты на поверхности матрицы закрепляют преимущественно за счет их ион-ионного взаимодействия, значительно реже используют другие виды взаимодействия. В последнем случае химизм взаимодействия реагента с поверхностью сорбента, как правило, не рассматривают, а способ иммобилизации подбирают эмпирически, меняя растворители. Изучение химизма взаимодействия реагентов различных классов с поверхностью носителей и установление закономерностей ком-плексообразования с участием лигандов, закрепленных на поверхности должно значительно расширить аналитические возможности сорбционных методов. Необходимо также выработать научно обоснованные критерии, позволяющие рассматривать «твердофазные реагенты» либо как модифицированные поверхностью органические реагенты, либо как модифицированные аналитическими реагентами сорбенты, что на данном этапе в ряде случаев сделать весьма затруднительно.

Глава 2 8-оксихинолин и особенности аналитического применения

2.1 Общие сведения

8-Оксихинолин (о-оксихинолин, оксин) имеет формулу C9H7ON, мол. вес 145,15, в чистом виде представляет почти бесцветные в виде игл кристаллы с характерным запахом. Т. пл. 75—76° С, т. кип. 266,6° С (752 мм рт. ст.). Растворим в спирте, ацетоне, хлороформе, бензоле, кислотах и щелочах, малорастворим в воде, в эфире; легко летуч с парами воды. Дает положительную реакцию Бсйльштейна окрашивает водный раствор FeCb в зеленый цвет. Легко взаимодействует со свободными галоидами, образуя 5-хлор- и 5,7-дихлорзамещенные, а также 5-бром-и 5,7-дибромзамещеиные. Окислители (перманганат и др.) превращают 8-оксихинолин в хинолиновую кислоту. Сочетается с солями диазония. Благодаря наличию в молекуле фенольной ОН-группы 8-оксихинолин можно отнести к гидроксилсодержащим органическим реагентам типа R—ОН, которые при уменьшении кислотности среды взаимодействуют с ионами элементов при тех же значениях рН, при которых эти ионы начинают гидролизоваться. Подтверждением этого могут служить значения рН, при которых начинают осаждаться оксихинолинаты различных элементов. В более кислой среде реакция избирательнее, поскольку в этих условиях меньшее число элементов может взаимодействовать с данным реагентом.


Страница: