Исследования в области синтеза и переработки полиэтилентерефталата и нанокомпозитов на его основе
Рефераты >> Химия >> Исследования в области синтеза и переработки полиэтилентерефталата и нанокомпозитов на его основе

Для решения задачи рециклинга полиэтилентерефталата нами проводятся исследования в области модификации и применения следующие подходы:

1) Применение удлинителя цепи, введенного в небольших количествах (от 0,5 до 3 %), позволяет восстановить исходное значение молекулярной массы

Одним из возможных методов рециклинга вторичного полиэтилентерефталата является его химическая модификация посредством введения в полимерную матрицу ПЭТ в процессе переработки удлинителей цепи (различных модификаторов).

Такие модификаторы являются бифункциональными органическими соединениями, т.к. имеют по две активные группировки, расположенные в плоскости бензольного кольца. Плоское пространственное расположение гетероциклов и их напряженное состояние способствует внедрению модификаторов в структуру полимеров при переработке.

Стабилизирующее действие таких модификаторов при термической, термоокислительной и термогидролитической деструкции термопластов основано на их взаимодействии с концевыми функциональными группами гетероцепных полимеров, поэтому вторичная переработка полиэтилентерефталата с добавлением таких модификаторов позволяет добиться удлинения цепи, увеличения молекулярной массы, снизить чувствительность к действию высоких температур и влаги при переработке.

Химическую модификацию исходных и вторичных полимеров можно проводить в статических условиях, что позволяет определиться в выборе вида и концентрации модификаторов. В динамических условиях можно оценить эффективность выбранных модификаторов по расчётным значениям средневязкостной молекулярной массы.

Предварительные исследования показали, что оптимальным количеством вводимых модификаторов (удлинителей цепи) для вторичного ПЭТ является 1,5-2 % масс.

При изучении реологических свойств модифицированных таким образом полимеров обнаружено увеличение молекулярной массы вторичного ПЭТ на 30-40 %, которое объясняется химическим взаимодействием активных гетероциклов модификаторов (удлинителей цепи) с концевыми группами модифицируемых термопластов.

Увеличение молекулярной массы вторичного ПЭТ обусловлено тем, что в условиях переработки (экструзия, литьё под давлением, прессование) при термическом воздействии происходит раскрытие активного цикла модификатора с последующим взаимодействием его с концевыми гидроксильными группами полимеров.

Введение в состав вторичного полиэтилентерефталата специально подобранных удлинителей цепи приводит к повышению температуры начала термоокислительной деструкции. Поглощение кислорода начинается после прохождения периода индукции и с низкой скоростью с начала момента окисления. Увеличение продолжительности течения реакции окисления и низкая её скорость на глубоких стадиях (после завершения периода индукции) при введении в состав полимеров реакционноспособных химических модификаторов приводит к повышению устойчивости этих полимеров к термоокислительной деструкции. Пики на кривых ТГ и ДТА, соответствующие термоокислительной деструкции, смещаются в высокотемпературную область и практически полностью накладываются на максимум пиролитического разложения полимеров. Уменьшение скорости развившегося автоокисления модифицированных вторичных полиэтилентерефталатов обусловлено их участием в реакциях без образования активных радикалов и подавлением вырожденного разветвления цепей окисления.

2) Метод твердофазной поликонденсации гранулированных вторичных полиэтилентерефталатов

В зависимости от природы используемых реагентов и температуры процесса можно выделить следующие разновидности твердофазной поликонденсации:

- собственно поликонденсация в твердой фазе, т.е. поликонденсация при температурах ниже температуры плавления, как мономеров, так и полимера. В этом случае на протяжении всего процесса подвижность всех реагирующих молекул ограничена;

поликонденсация олигомеров в твердой фазе, т.е. поликонденсация при температурах выше температуры плавления мономеров, но ниже температуры размягчения полимера. В этом случае начальная стадия поликонденсации протекает в расплаве, твердофазной является вторая стадия - поликонденсация олигомеров;

трехмерная поликонденсация, особенно ее глубокие стадии, также может рассматриваться как разновидность твердофазной поликонденсации, так как реакционноспособные концы макромолекул оказываются малоподвижными, вследствие закрепления их в жесткой трехмерной полимерной сетке;

реакционное формование - поликонденсация, протекающая в твердых смесях (или почти твердых), которым придана форма будущего изделия.

На рис. 4 изображена установка для осуществления твердофазной поликонденсации.

При поликонденсации олигомеров процесс протекает в две стадии [11]. В начале поликонденсации в расплаве или растворе получают сравнительно низкомолекулярные полимеры-олигомеры (преполимеры, форполимеры). Дальнейшую их поликонденсацию проводят уже в самой твердой фазе. Таким образом, поликонденсация в этом случае протекает при температуре выше температуры плавления мономера, но ниже температуры плавления полимера. Структурные факторы при твердофазной поликонденсации, связанные со строением мономеров, не играют роли. Большое значение приобретает строение молекулы олигомера, особенности конформационного строения полимера цепи и его надмолекулярная структура.

Рис. 4. Установка для проведения ТФПК. 1 - нагревательный элемент; 2 - масляная баня; 3 - реакционные колбы; 4 - контактный термометр; 5 - холодильник; 6 - приемник

На примере поликонденсации олигомеров полютилентерефталата было установлено, что значительное влияние на процесс роста цепи из олигомеров оказываетдисперсность их частиц. С уменьшением размера твердых частиц олигомеров существенно возрастает молекулярная масса образующегося полиэтилентерефталата.

При поликонденсации в твердой фазе возникает своеобразное противоречие: для ускорения процесса следует повышать температуру синтеза, но повышение температуры может привести к слипанию частиц порошка. Поэтому нами были предусмотрены меры по предотвращению слипаемости частиц порошка предполимера: обработка частиц полиэтилентерефталата органическими жидкостями вызывающими их кристаллизацию, после которой частицы не слипаются; интенсивная вибрация для предотвращения слипаемости на ранних стадиях; использование добавок инертных мелкодисперсных порошков (от 0,1 % до 10 % от массы полимера).

Перед ТФПК полученный форполимер измельчают и подвергают предварительной термической обработке при определенной температуре, которая ниже температуры плавления форполимера, в токе инертного газа или в вакууме. Термическую обработку проводят для повышения кристалличности и сокращения времени проведения твердофазной поликонденсации.

Для более эффективного проведения реакции получения форполимера необходимо использовать катализаторы. В качестве катализатора могут быть использованы различные соединения титана, оксид цинка, ацетат цинка и ацетат марганца. Наиболее эффективно используются органические соединения титана: тетрабутилтитан, тетрапропилтитан, тетраэтилтитан, тетраметилтитан и четыреххлористый титан. Катализатор вводится в соотношении 10-100 ч. на 1000 ч. полимера, предпочтительней 30-300 ч. Дополнительно катализатор может быть введен в течение реакции. Когда добавлен катализатор, предварительная термообработка не обязательна.


Страница: