Концепции современного естествознания (химическая составляющая)
Рефераты >> Химия >> Концепции современного естествознания (химическая составляющая)

Нужны меры по поиску экологически безупречных и практически неисчерпаемых источников энергии. Одной из таких мер является использование солнечной энергии. Около половины солнечной энергии рассеивается и поглощается атмосферой и около 10% задерживается в капельножидких и пылевых облаках. Остающаяся доля дошедшей до поверхности Земли солнечной энергии оказывается в десятки раз превышающей предельно допустимое производство термоядерной энергии.

Возникает задача химического преобразования солнечной энергии, т.е. задача аккумулирования солнечной энергии, ориентируясь на тот опыт, которым пользуется природа, а именно фотосинтез.

Есть смысл поставить задачу искусственного крупномасштабного получения на основе преобразования солнечной энергии такого химического топлива, каким является водород из воды:

Принципиально эта реакция осуществима. Практически для ее реализации требуется подача больших количеств энергии, т.к. энергия связи Н – О в молекуле воды значительна (467 кДж/моль), поэтому термическое разложение воды начинается лишь при температуре выше 12000С и завершается при 2500-26000С.

Аналогичное количество электроэнергии требуется также и для электролитического разложения воды. Как же, однако, справляется с вовлечением в фотосинтез воды зеленый лист? Оказывается, что его фотокатализаторы действуют по принципу электролитического разложения воды. Разрабатываемые ныне искусственные молекулярные фото каталитические системы все более приближаются к природным фотосинтезирующим объектам не только по принципу их действия, но и по самой организации систем. Широкомасштабное преобразование солнечной энергии в энергию химических топлив поставлено на очередь дня. При этом надо иметь в виду, что водород является самым высококалорийным и экологически чистым топливом. Он удобен и для стационарной, и для транспортной энергетики. Бесспорно, - это универсальное топливо энергетики будущего.

4.3 Химия экстремальных состояний

В отличие от каталитической химии, особенностью которой является химическая активизация молекул реагента, т.е. расслабление исходных химических связей при взаимодействии с их катализатором, химия экстремальных состояний характеризуется энергетической активацией реагента, т.е. подачей энергии извне для полного разрыва исходных связей.

К химии экстремальных состояний относятся плазмохимия и радиационная химия (химия высоких энергий).

В плазмохимических процессах скорость перераспределения химических связей между реагирующими молекулами достигает оптимума, заданного природой: длительность элементарных актов химических превращений приближается в нем к 10-13 сек. при почти полном отсутствии обратимости реакции, тогда как во всех современных заводских реакторах такая скорость из-за обратимости снижается в тысячи и миллионы раз. Поэтому плазмохимические процессы исключительно высокопроизводительны.

Метановый плазмотрон с производительностью 75 тонн ацетилена в сутки имеет длину всего 65 см и диаметр 15 см., по сути, заменяет целый завод. При этом метан в нем при температуре 3000-3500 градусов за одну десятитысячную доли секунды превращается на 80% в ацетилен.

В настоящее время разработаны способы связывания атмосферного азота посредством плазмохимического синтеза оксидов азота, что может быть экономнее аммиачного метода по энергетическим затратам.

Создается плазмохимическая технология производства мелкодисперсных порошков - основного сырья для порошковой металлургии.

Плазмохимия позволяет получить такие материалы, которые до сих пор вообще не были известны человеку, например, металлобетон, где в качестве связующего используются сталь, чугун, алюминий. Плазменная технология позволяет путем оплавления частиц горной породы создать прочное сцепление этой породы с металлом, благодаря чему получаемый металлобетон прочнее обычного на сжатие в 10 и на растяжение в 100 раз.

В России разработаны плазмохимические процессы превращения угля в жидкое топливо, устраняющие применение высоких давлений и выбросы серы и золы.

Радиационная химия. Начало ее было положено облучением полиэтилена с целью придания ему большой прочности. Наиболее важными процессами радиационно-химической технологии являются полимеризация, вулканизация, производство композиционных материалов, в том числе композиций на древесной основе, закрепление лаков и других кроющих материалов на поверхности дерева и металла, получение полимербетонов путем пропитки обычного бетона тем или иным мономером с последующим облучением.

Принципиально новой и важной областью химии экстремальных состояний является самораспространяющийся высокотемпературный синтез (СВС) тугоплавких и керамических материалов.

Он основан на реакции горения одного металла в другом или металла в азоте, углероде, кремнии. Метод СВС - это результат развития тепловой теории процессов горения и взрыва в твердых телах. Он предусматривает своего рода горение, например, порошка титана в порошке бора с образованием боридов ТiВ и ТiВ2 или порошка циркония в порошке кремния с образование силицидов циркония ZrSi, ZrSi2. Методом СВС получены сотни тугоплавких соединений превосходного качества.

Характерной особенностью метода СВС является простота технологических установок, исключительно большая выгода в затратах энергии. По оценке американских специалистов, СВС - технология является высочайшим достижением русских ученых из Института химической физики Российской Академии наук.

Ваша точка зрения?

1. Охарактеризуйте роль катализа в различных отраслях химии.

2. Раскройте роль успехов физики, химии, биологии в решении проблем энергетики настоящего и будущего.

3. Что такое химия экстремальных состояний?

4.4 Выводы

1. На третьем уровне развития химических знаний - учение о химических процессах - химия становится наукой о процессах и механизмах изменения веществ.

2. Катализ - могучее посредничество «третьих тел» в осуществлении химических процессов, способное творить чудеса в химии.

3. Азотобактер (в клубеньках бобовых растений) действует по принципу каталитического связывания свободного азота посредством металлоорганических катализаторов.

4. Катализаторы позволили ввести дешевые углеводороды нефти в качестве сырья для органического синтеза и получать из них синтетические каучуки, пластмассы, олифу, лаки, моющие средства и т.д.

5. Цеолитовые катализаторы обладают широко развитой поверхностью и избирательностью действия.

6. К перспективным областям каталитической химии относятся: металлокомплексный, межфазный, мембранный катализ и катализ веществами, подобными ферментам.

7. Водород является самым высококалорийным и экологически чистым топливом.

8. В плазмохимических процессах скорость перераспределения химических связей между реагирующими молекулами достигает оптимума, заданного природой.

9. Самораспространяющийся высокотемпературный синтез тугоплавких и керамических материалов основан на реакции горения одного металла в другом металле, металла в азоте, углероде или кремнии, что представляет собой принципиально новую область химии экстремальных состояний.


Страница: