Металлы побочной подгруппы I группы
Рефераты >> Химия >> Металлы побочной подгруппы I группы

Химические свойства меди

По химическим свойствам медь занимает промежуточное положение между элементами первой триады VIII группы и щелочными элементами I группы системы Менделеева. Медь, как и Fe, Co, Ni, склонна к комплексообразованию, дает окрашенные соединения, нерастворимые сульфиды и т. д. Сходство с щелочными металлами незначительно. Так, медь образует ряд одновалентных соединений, однако для нее более характерно 2-валентное состояние. Соли одновалентной меди в воде практически нерастворимы и легко окисляются до соединений 2-валентной меди; соли 2-валентной меди, напротив, хорошо растворимы в воде и в разбавленных растворах полностью диссоциированы. [11]

Медь — электроположительный металл. Относительную устойчивость ее ионов можно оценить на основании следующих данных:

Cu2+ + e → Cu+ E0 = 0,153 B,

Сu+ + е → Сu0 E0 = 0,52 В,

Сu2+ + 2е → Сu0 E0 = 0,337 В.

Медь вытесняется из своих солей более электроотрицательными элементами и не растворяется в кислотах, не являющихся окислителями. Медь растворяется в азотной кислоте с образованием Cu(NO3)2 и оксидов азота, в горячей конц. H2SO4 — с образованием CuSO4 и SO2. В нагретой разбавленной H2SO4 медь растворяется только при продувании через раствор воздуха.

Химическая активность меди невелика, при температурах ниже 185°С с сухим воздухом и кислородом не реагирует. В присутствии влаги и СО2 на поверхности меди образуется зеленая пленка основного карбоната. При нагревании меди на воздухе идет поверхностное окисление; ниже 375°С образуется СuО, а в интервале 375—1100°С при неполном окислении меди — двухслойная окалина (СuО + Сu2О). Влажный хлор взаимодействует с медью уже при комнатной температуре, образуя хлорид меди(II), хорошо растворимый в воде. Медь реагирует и с другими галогенами.

Особое сродство проявляет медь к сере: в парах серы она горит. С водородом, азотом, углеродом медь не реагирует даже при высоких температурах. Растворимость водорода в твердой меди незначительна и при 400°С составляет 0,06 г в 100 г меди. Присутствие водорода в меди резко ухудшает ее механические свойства (так называемая "водородная болезнь"). При пропускании аммиака над раскаленной медью образуется Cu2N. Уже при температуре каления медь подвергается воздействию оксидов азота: N2O и NO взаимодействуют с образованием Сu2О, a NO2 — с образованием СuО. Карбиды Сu2С2 и СuС2 могут быть получены действием ацетилена на аммиачные растворы солей меди. Окислительно-восстановительные равновесия в растворах солей меди в обеих степенях окисления осложняются легкостью диспропорционирования меди(I) в медь(0) и медь(II), поэтому комплексы меди(I) обычно образуются только в том случае, если они нерастворимы (например, CuCN и Cul) или если связь металл—лиганд имеет ковалентный характер, а пространственные факторы благоприятны.

Медь(II). Двухзарядный положительный ион меди является ее наиболее распространенным состоянием. Большинство соединений меди(I) очень легко окисляется в соединения двухвалентной меди, но дальнейшее окисление до меди(Ш) затруднено.

Конфигурация 3d9 делает ион меди(II) легко деформирующимся, благодаря чему он образует прочные связи с серосодержащими реагентами (ДДТК, этилксантогенатом, рубеановодородной кислотой, дитизоном). Основным координационным полиэдром для двухвалентной меди является симметрично удлиненная квадратная бипирамида. Тетраэдрическая координация для меди(П) встречается довольно редко и в соединениях с тиолами, по-видимому, не реализуется.

Большинство комплексов меди(II) имеет октаэдрическую структуру, в которой четыре координационных места заняты лигандами, расположенными к металлу ближе, чем два других лиганда, находящихся выше и ниже металла. Устойчивые комплексы меди(II) характеризуются, как правило, плоскоквадратной или октаэдрической конфигурацией. В предельных случаях деформации октаэдрическая конфигурация превращается в плоскоквадратную. Большое аналитическое применение имеют внешнесферные комплексы меди.

Гидроксид меди(II) Сu(ОН)2 в виде объемистого осадка голубого цвета может быть получен при действии избытка водного раствора щелочи на растворы солей меди(II). ПР(Сu(ОН)-) = 1,31.10-20. В воде этот осадок малорастворим, а при нагревании переходит в СuО, отщепляя молекулу воды. Гидроксид меди(II) обладает слабо выраженными амфотерными свойствами и легко растворяется в водном растворе аммиака с образованием осадка темно-синего цвета. Осаждение гидроксида меди происходит при рН 5,5.

Медь(III). Доказано, что медь(III) с конфигурацией 3d8 может существовать в кристаллических соединениях и в комплексах, образуя анионы — купраты. Купраты некоторых щелочных и щелочноземельных металлов можно получить, например, нагреванием смеси оксидов в атмосфере кислорода. КСuО2 — это диамагнитное соединение голубовато-стального цвета.

При действии фтора на смесь КСl и СuСl2 образуются светло-зеленые кристаллы парамагнитного соединения К3СuF6.

При окислении щелочных растворов меди(II), содержащих периодаты или теллураты, гипохлоритом или другими окислителями образуются диамагнитные комплексные соли состава K7[Cu(IO6)2]7H2O. Эти соли являются сильными окислителями и при подкислении выделяют кислород.

Соединения меди(Ш). При действии спиртового раствора щелочи и пероксида водорода на охлажденный до 50° спиртовой раствор хлорида меди(II) выпадает коричнево-черный осадок пероксида меди СuО2. Это соединение в гидратированной форме можно получить при действии пероксида водорода на раствор соли сульфата меди, содержащего в небольших количествах Na2CO3. Суспензия Сu(ОН)2 в растворе КОН взаимодействует с хлором, образуя осадок Сu2О3 красного цвета, частично переходящий в раствор.

Соединения меди

Соединения меди (I)

Сульфид меди – Cu2S в природе встречается в виде ромбических кристаллов медного блеска; удельный вес его 5,785, температура плавления 1130 0С. Из расплава Cu2S затвердевает в кубических кристаллах. Cu2S достаточно хорошо проводит электрический ток, однако хуже, чем сульфид меди (2)

Окись меди (I) Cu2O встречается в природе в виде минерала куприта – плотной массы цвета от красного до черно – коричневого; иногда она имеет кристаллы правильной кубической формы. При взаимодействии сильных щелочей с солями меди(I) выпадает желтый осадок, переходящий при нагревании в осадок красного цвета, по-видимому, Cu2O. Гидроксид меди(I) обладает слабыми основными свойствами, он несколько растворим в концентрированных растворах щелочей. Искусственно Cu2O получают добавлением натриевой щелочи и не слишком сильного восстановителя, например виноградного сахара, гидразина или гидроксиламина, к раствору сульфита меди (II) или к фелинговой жидкости.

В воде окись меди (I) практически нерастворима. Она однако, легко растворяется в водном растворе аммиака и в концентрированных растворах галогеноводородных кислот с образованием бесцветных комплексных соединений [Cu(NH3)2]OH и соответственно H[CuX2] (где Х – галоген).

В растворах щелочей окись меди (I) заметно растворима. Под действием разбавленных галогеноводородных кислот окись меди (I), превращается в галогенид меди (I), также не растворимый в воде. В разбавленной кислородной кислоте, например серной, окись меди (I) растворяется, однако при этом распадается на соль меди (II) и металл: Cu2O + H2SO4 = CuSO4 + H2O + Cu.


Страница: