Молекулярная подвижность в ненаполненных и наполненных сшитых кремнийорганических каучуках -
Рефераты >> Химия >> Молекулярная подвижность в ненаполненных и наполненных сшитых кремнийорганических каучуках -

Рис. 9. Температурные зависимости tg б, полученные после резкого охлаждения образцов СКТВФ, наполненных 35 вес. ч. аэросила 300 и адсорбировавших 6,0% воды (7), 3,3% этилового спирта (2) и 2,8% эти-ленгликоля (3)

Видно, что каучук, содержащий наполнитель, характеризуется дополнительным максимумом, лежащим в области между стеклованием и плавлением и соответствующим по своему положению наблюдаемому при исследовании диэлектрических свойств. Этот максимум не связан с кристаллизацией, поскольку положение и форма его не изменяются после предварительной выдержки образца при 190 К в течение 1 ч. Аналогичные переходы в области 170—200 К обнаружены нами и для других исследованных сшитых кремнийорганических каучуков, наполненных аэросилом. Следует отметить, что размытый переход в этой температурной области наблюдается в работе [14]. Из сопоставления данных, полученных при исследовании методами диэлектрических и механических потерь, можно заключить, что указанный переход определяется размораживанием подвижности макромолекул в каучуковой матрице. Можно предположить, что в рассматриваемой области температур размораживается подвижность макромолекул каучука, связанного с частицами аэросила. Поскольку доля таких молекул, образующих переходный слой и обладающих из-за связанности с частицами аэросила ограниченной подвижностью, невелика по сравнению со «свободными» макромолекулами, следует ожидать, что интенсивность максимума механических потерь, определяемая размораживанием подвижности этих макромолекул, должна быть существенно ниже по сравнению с максимумом потерь, определяемым стеклованием не связанной с наполнителем аморфной фазы. Когда в переходном слое присутствуют молекулы воды, они играют роль дипольной метки, что при измерении диэлектрических свойств выражается в появлении интенсивного максимума tg б, отражающего размораживание подвижности каучуковой матрицы.

Для окончательного подтверждения высказанного предположения ми ввели в качестве дипольной метки этиленгликоль и этиловый спирт. На рис. 9 приведены зависимости тангенса угла диэлектрических потерь для наполненного аэросилом (35 вес. ч. аэросила 300) каучука СКТВФ, сорбировавшего воду, этиловый спирт и этиленгликоль. В то время как максимумы, отвечающие размораживанию подвижности диполей собственно этилового спирта и этиленгликоля смещены относительно максимумов, обусловленных размораживанием подвижности молекул воды (на чем не будем останавливаться), температурная область релаксации, которую мы относим к размораживанию подвижности молекул каучука в переходных слоях, не зависит от типа дипольной метки, и во всех случаях в этой области наблюдается отчетливый максимум tg б диэлектрических потерь.

Таким образом, можно считать, что релаксационный максимум в области 190—220 К определяется размораживанием подвижности или своего рода расстекловыванием переходного слоя.

Сопоставление экспериментальных данных по изучению диэлектрической и механической релаксации помимо установления температурных областей стеклования, кристаллизации и плавления ненаполненных и наполненных сшитых кремнийорганических каучуков позволило выявить область размораживания молекулярной подвижности в переходном слое наполненных каучуков. Предложенный способ введения дипольной метки для выявления этой области можно, по-видимому, использовать при исследовании любых наполненных систем, в которых наполнитель может играть роль сорбента. Интенсивность получаемого при этом пика tg б может рассматриваться как мера связывания каучука наполнителем и, следовательно, использоваться для изучения специфики взаимодействия наполнитель — каучук. Сорбированная влага резко изменяет диэлектрические характеристики наполненных кремнийорганических каучуков, что выражается в появлении существенных диэлектрических потерь и соответствующего изменения диэлектрической проницаемости.

ЛИТЕРАТУРА

1. Flory P. h, Rehner J., Jr. J. Chem. Phys., 1943, v. 11, № 10, p. 521.

2. Левин В. Ю. Дис. на соискание уч. ст. докт. хим. наук. М.: ИНЭОС АН СССР, 1976, с. 87, 88.

3. Мартиросов В. А., Левин В. Ю., Жданов А. А., Слонимский Г. Л. Высокомолек. соед. А, 1981, т. 23, № 4, с. 896.

4. Москаленко В. А., Цванкин Д. Я., Галил-Оглы Ф. А. Высокомолек. соед. А, 1970, т. 12, № 3, с; 548.

5. Андрианов К. А., Голубков Г. Е. Ж. техн. физ., 1956, т. 26, вып. 8, с. 1689.

6. Голубков Г. Е., Талыков В. А. Пласт, массы, 1969, № 5, с. 26.

7. Давыдов В. Я., Киселев А. В. Коллоидн. ж., 1968, т. 30, № 3, с. 353.

8. Киселев В. Ф. Докл. АН СССР, 1967, т. 176, № 1, с. 124.

9. И. Соболев В. А., Чуйко А. А., Тертых В. А., Мащенко В. М. В кн.: Связанная вода в дисперсных системах. М.: Изд-во МГУ, 1974, с. 64.

10. Агамходжаев А. А., Журавлев Л. Т., Киселев А. В., Шенгелия К. Я. Изв. АН СССР. Сер. хим., 1969, т. 10, с. 2111.


Страница: