Нанотрубки
Рефераты >> Химия >> Нанотрубки

Еще одно применение в наноэлектронике - создание полупроводниковых гетероструктур, т.е. структур типа металл/полупроводник или стык двух разных полупроводников. Теперь для изготовления такой гетероструктуры не надо будет выращивать отдельно два материала и затем "сваривать" их друг с другом. Все, что требуется, это в процессе роста нанотрубки создать в ней структурный дефект (а именно, заменить один из углеродных шестиугольников пятиугольником). Тогда одна часть нанотрубки будет металлической, а другая - полупроводником!

Разработано уже и несколько применений нанотрубок в компьютерной индустрии. Например, созданы и опробованы прототипы тонких плоских дисплеев, работающих на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя. Получающееся при этом зерно изображения будет фантастически малым: порядка микрона!

С помощью того же атомного микроскопа можно производить запись и считывание информации с матрицы, состоящей из атомов титана, лежащих на -Al2O3 подложке. Эта идея уже также реализована экспериментально: достигнутая плотность записи информации составляла 250 Гбит/см2. Однако в обоих этих примерах до массового применения пока далеко - слишком уж дорого обходятся такие наукоемкие новшества. Поэтому одна из самых главных задач здесь - разработать дешевую методику реализации этих идей.

Пустоты внутри нанотрубок (и углеродных каркасных структур вообще) также привлекали внимание ученых. В самом деле, а что будет, если внутрь фуллерена поместить атом какого-нибудь вещества? Эксперименты показали, что интеркаляция (т.е. внедрение) атомов различных металлов меняет электрические свойства фуллеренов и может даже превратить изолятор в сверхпроводник! А можно ли таким же образом изменить свойства нанотрубок? Оказывается, да. В работе [3] ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния! На Рис.3 схематично показана структура такой нанотрубки и приведен снимок, полученный исследователями с помощью электронной микроскопии. Электрические свойства такой необычной структуры сильно отличались как от свойств простой, полой нанотрубки, так и от свойств нанотрубки с пустыми фуллеренами внутри. Как, оказывается, много значит валентный электрон, отдаваемый атомом металла во всеобщее распоряжение! Кстати, интересно отметить, что для таких соединений разработаны специальные химические обозначения. Описанная выше структура записывается как Gd@C60@SWNT, что означает "Gd внутри C60 внутри однослойной нанотрубки (Single Wall NanoTube)".

В нанотрубки можно не только "загонять" атомы и молекулы поодиночке, но и буквально "вливать" вещество. Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами, то есть она как бы втягивает в себя вещество. Таким образом, нанотрубки можно использовать как микроскопические контейнеры для перевозки химически или биологически активных веществ: белков, ядовитых газов, компонентов топлива и даже расплавленных металлов. Попав внутрь нанотрубки, атомы или молекулы уже не могут выйти наружу: концы нанотрубок надежно "запаяны", а углеродное ароматическое кольцо слишком узкое для большинства атомов. В таком виде активные атомы или молекулы можно безопасно транспортировать. Попав в место назначения, нанотрубки раскрываются с одного конца (а операции "запаивания" и "распаивания" концов нанотрубок уже вполне под силу современной технологии) и выпускают свое содержимое в строго определенных дозах. Это - не фантастика, эксперименты такого рода уже сейчас проводятся во многих лабораториях мира. И не исключено, что через 10-20 лет на базе этой технологии будет проводиться лечение заболеваний: скажем, больному вводят в кровь заранее приготовленные нанотрубки с очень активными ферментами, эти нанотрубки собираются в определенном месте организма некими микроскопическими механизмами и "вскрываются" в определенный момент времени. Современная технология уже практически готова к реализации такой схемы.

Нанотрубки излучают чрезвычайно яркий свет.

Исследовательская группа IBM и университета Дьюка смогла превратить углеродные нанотрубки в источник инфракрасного излучения необычно высокой эффективности.

«Основным моментом нашей работы является открытие механизма электростимуляции эмиссии света единичной молекулой-нанотрубкой, - говорится в работе авторов открытия. – Данный механизм требует всего один тип носителей заряда, например электроны или дырки, эмиссия при этом локализована в небольшой области нанометрового размера. Вследствие малости излучающей области генерируется чрезвычайно яркий свет».

Ученые положили нанотрубки диаметром 2 – 3 нм на подложку методом химического осаждения из паров. При этом они перекрыли зазор кремниевого покрытия на кремниевой подложке. Электрические контакты были созданы методами электронной литографии и последующим осаждение слоя палладия толщиной 3 нм. При разности потенциалов менее –3,1 В в случае тока дырок или более –2,1 В в случае тока электронов нанотрубки излучали в инфракрасной области спектра с длиной волны 1 – 2 мкм из области в промежутке между покоящейся и «висящей» частями нанотрубки.

«В нашем устройстве ток в 3 мкА приводил к излучению 107 фотонов с площади в 1 кв. нм в 1 с, что в 105 раз больше потока фотонов с больших площадей светодиодов», - заявил один из авторов работы Хиа Чен (Jia Chen) из компании IBM.

Ученые отмечают, что возможность излучения в диапазоне 1 – 2 мкм особенно интересна, поскольку именно это излучение используется в оптических системах передачи данных. Более того – длина волны определяется геометрическим параметрами нанотрубок – в частности, их диаметром. Это открывает возможность создания устройств, излучающих в разных областях спектра, в том числе и в видимой его области.

Применение нанотрубок в электронике.

Хотя технологические применения нанотрубок, основанные на их высокой удельной поверхности, представляют значительный прикладной интерес, наиболее привлекательными представляются те направления использования нанотрубок, которые связаны с разработками в различных областях современной электроники. Такие свойства нанотрубок, как малые размеры, меняющиеся в различных пределах, в зависимости от условий синтеза, электропроводность, механическая прочность и химическая стабильность, позволяют рассматривать нанотрубки в качестве основы будущих элементов микроэлектроники. Было рассчитано, что внедрение в идеальную структуру однослойной нанотрубки в качестве дефекта пары пятиугольник-семиугольник изменяет ее хиральность и, как следствие, ее электронные свойства. Конкретно была рассмотрена структура (8,0)/(7,1). Как следует из расчетов трубка с хиральностью (8,0) представляет собой полупроводник с шириной запрещенной зоны 1,2 эВ, в то время как трубка с хиральностью (7,1) является полуметаллом для которого ширина запрещенной зоны равна нулю. Аналогичным образом в результате внедрения дефекта могут быть получены гетеропереходы полупроводник-полупроводник с различными значениями ширины запрещенной зоны. Тем самым нанотрубка с внедренным в нее дефектом может рассматриваться как гетеропереход металл-полупроводник, который, в принципе, может составить основу полупроводникового элемента рекордно малых размеров.


Страница: