Необычные свойства обычной воды
Рефераты >> Химия >> Необычные свойства обычной воды

4.4.Поверхностное натяжение

Среди необычных свойств воды трудно обойти вниманием еще одно - ее исключительно высокое поверхностное натяжение 0,073 Н/м (при 20o С). Из всех жидкостей более высокое поверхностное натяжение имеет только ртуть. Оно проявляется в том, что вода постоянно стремится стянуть, сократить свою поверхность, хотя она всегда принимает форму емкости, в которой находится в данный момент. Вода лишь кажется бесформенной, растекаясь по любой поверхности. Сила поверхностного натяжения заставляет молекулы ее наружного слоя сцепляться, создавая упругую внешнюю пленку. Свойства пленки также определяются замкнутыми и разомкнутыми водородными связями, ассоциатами различной структуры и разной степени упорядоченности. Благодаря пленке некоторые предметы, будучи тяжелее воды, не погружаются в воду (например, осторожно положенная плашмя стальная иголка). Многие насекомые (водомерки, ногохвостки и др.) не только передвигаются по поверхности воды, но взлетают с нее и садятся, как на твердую опору. Более того, живые существа приспособились использовать даже внутреннюю сторону водной поверхности. Личинки комаров повисают на ней с помощью не смачиваемых щетинок, а маленькие улитки - прудовики и катушки - ползают по ней в поисках добычи. Высокое поверхностное натяжение позволяет воде принимать шарообразную форму при свободном падении или в состоянии невесомости: такая геометрическая форма имеет минимальную для данного объема поверхность. Струя химически чистой воды сечением 1 см2 по прочности на разрыв не уступает стали того же сечения. Водную струю как бы цементирует сила поверхностного натяжения. Поведение воды в капиллярах подчиняется и более сложным физическим закономерностям. Сент-Дьердьи отмечал, что в узких капиллярах возникают структурно упорядоченные слои воды вблизи твердой поверхности. Структурирование распространяется в глубь жидкой фазы на толщину слоя порядка десятков и сотен молекул (ранее предполагали, что упорядоченность ограничивается лишь мономолекулярным слоем воды, примыкающим к поверхности). Особенности структурирования воды в капиллярных системах позволяют с определенным основанием говорить о капиллярном состоянии воды. В природных условиях это состояние можно наблюдать у так называемой поровой воды. В виде тончайшей пленки она устилает поверхность полостей, пор, трещин пород и минералов земной коры. Развитые межмолекулярные контакты с поверхностью твердых тел, особенности структурной упорядоченности, вероятно, и являются причиной того, что поровая вода замерзает при более низкой температуре, чем обычная - свободная - вода. Исследования показали, что при замерзании связанной воды проявляются не только изменения ее свойств, - иными становятся и свойства тех горных пород, с которыми она непосредственно соприкасается.

4.5.Аномалия теплоемкости.

Что же это за необычный процесс, происходящий в воде и делающий ее непохожей на другие жидкости? Чтобы уяснить его физическую сущность, рассмотрим еще одну, на мой взгляд, самую сильную аномалию воды - температурное поведение ее теплоемкости. Величина теплоемкости, как известно, показывает, сколько нужно затратить тепла, чтобы поднять температуру вещества на один градус. Для подавляющего числа веществ теплоемкость жидкости после плавления кристалла увеличивается незначительно - никак не более 10%. Другое дело - вода. При плавлении льда теплоемкость скачет от 9 до 18 кал/моль " град, то есть в два раза! Такого огромного скачка теплоемкости при плавлении не наблюдается ни у одного другого вещества: здесь вода абсолютный рекордсмен.Во льду энергия, подводимая для нагревания, тратится в основном на увеличение тепловой скорости молекул. Скачок теплоемкости после плавления означает, что в воде открываются какие-то новые процессы (и очень энергоемкие), на которые тратится, подводимое тепло и которые обусловливают появление избыточной теплоемкости. Такая избыточная теплоемкость и, следовательно, упомянутые энергоемкие процессы существуют во всем диапазоне температур, при которых вода находится в жидком состоянии. Она исчезает только в паре, то есть эта аномалия является свойством именно жидкого состояния воды. Теплоемкость воды аномальна не только по своему значению. Удельная теплоемкость разная при различных температурах, причем характер температурного изменения удельной теплоемкости своеобразен: она снижается по мере увеличения температуры в интервале от 0 до 37o С, а при дальнейшем увеличении температуры - возрастает. Минимальное значение удельной теплоемкости воды обнаружено при температуре 36,79o С, а ведь это нормальная температура человеческого тела! Нормальная температура почти всех теплокровных живых организмов также находится вблизи этой точки.При сильном переохлаждении теплоемкость сильно возрастает, то есть аномальный вклад в нее еще больше увеличивается. Переохлажденная вода еще более аномальна, чем обычная.

5.Структура и формы льда.

Вода при охлаждении в нормальных условиях ниже 0о С кристаллизируется, образуя лед, плотность которого меньше, а объем почти на 10% больше объема исходной воды. Охлаждаясь, вода ведет себя как многие другие соединения: понемногу уплотняется-уменьшает свой удельный объем. Но при 4 оС ( точнее, при 3,98 оС) наступает кризисное состояние: при дальнейшем понижении температуры объем воды уже не уменьшается, а увеличивается. С этого момента начинается упорядочение взаимного расположения молекул, складывается характерная для льда гексагональная кристаллическая структура. Каждая молекула в структуре льда соединена водородными связями с четырьмя другими. Это приводит к тому, что в фазе льда образуется ажурная конструкция с " каналами" между фиксированными молекулами воды. В водных растворах некоторых органических веществ вокруг молекул примесей возникают упорядоченные группы водных молекул своеобразные зоны "жидкого льда", имеющие кубическую структуру, которая отличается большой рыхлостью по сравнению с гексагональной. Появление такого льда вызывает значительное расширение всей замерзшей массы. При появлении льда разрушаются связи не только дальнего, но и ближнего порядка. Так, при 0 о С 9- 15% молекул Н2О утрачивают связи с соединениями, в результате увеличивается подвижность части молекул и они погружаются в те полости, которыми богата ажурная структура льда. Этим объясняется сжатие льда при таянии и большая по сравнению с ним плотность образующейся воды. При переходе " лед-вода" плотность возрастает примерно на 10%, и можно считать, что эта величина определенным образом характеризует количество молекул Н2О, попавших в полости.

В твердой воде (лед) атом кислорода каждой молекулы уча­ствует в образовании двух водородных связей с соседними молекулами воды согласно схеме, в которой водородные связи показаны пунктиром

Образование водо­родных связей приводит к такому расположению молекул воды, при котором они соприкасаются друг с другом своими разноимен­ными полюсами. Молекулы образуют слои, причем каждая из них связана с тремя молекулами, принадлежащими к тому же слою, и с одной — из соседнего слоя. Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, раз­меры наименее плотным структурам, в ней существуют пустоты, раз­меры которых несколько превышают размеры молекулы .


Страница: