Пиролиз угля
Рефераты >> Химия >> Пиролиз угля

Характер процесса термического разложения углей, сочетающегося с конденсированием продуктов разложения, в наиболее общем виде представлен на рис. 1.

Рис.1. Общая схема пиролиза углей: (Т – твёрдая фаза; Ж – жидкая фаза; Г – газовая фаза; 1, 2, 3 . . . n – стадии процесса)

На рисунке показан параллельно-последовательный ход процессов с образованием промежуточных неустойчивых продуктов. Происходит прямой их переход в твёрдое состояние, систематическое уменьшение массы твёрдого остатка, изменение выхода газовой и парогазовой фазы, возникновение, нарастание и исчезновение жидкой фазы. На всех стадиях процесса эти фазы взаимодействуют между собой и каждая из них вовлекается в поликонденсационные процессы, приводящие к образованию новых жидких, твёрдых и газовых фаз, претерпевающих превращения на последующих стадиях пиролиза.

Характер разрушения химических связей при термическом разложении в большей мере зависит от скорости нагревания угля. При медленном нагреве избирательно разрушаются наименее прочные связи. При большой скорости нагревания ускоряется и деструкция, но отстаёт от темпа повышения температуры поэтому сдвигается в область более высоких температур. При перегреве угля одновременно разрываются и слабые, и более прочные связи. Поэтому разрушение исходной органической массы приобретает более случайный характер. При этом, естественно, образуются более крупные осколки молекул, из которых формируются тяжёлые фракции жидкой фазы смол, главным образом асфальтены, обогащённые кислород- и азотсодержащими компонентами.

Наибольшее количество ненасыщенных и нестабильных продуктов разложения угля образуется в диапазоне 350-5000С. Пир этом для горючих ископаемых низкой степени метаморфизма, органическая масса которых содержит наибольшее число менее прочных химических связей, максимум интенсивности образования нестабильных продуктов смещён в зону низких температур. По мере увеличения степени углефикации этот максимум смещается в область более высоких температур. Эта закономерность иллюстрируется представленным на рис.2 графиком изменения показателя непредельности (иодное число) углей в процессе термической деструкции.

Рис.2. Изменение непредельности углей в процессе термической деструкции

Одной из наиболее существенных особенностей термического разложения углей является перераспределение водорода между продуктами этого разложения. Это существенно отличает деструкцию угольного вещества от термического распада алифатических углеводородов и большинства полимеров, которые при пиролизе преимущественно переходят в газовую фазу. При термическом распаде угольного вещества происходит конденсация циклов с образованием продуктов, обогащённых углеродом. Таким образом, конденсированный обуглероженный продукт образуется при взаимодействии свободных макрорадикалов и ненасыщенных молекул, полученных преимущественно из дегидрированной или обеднённой водородом части остаточной массы угля.

Наиболее тщательно было изучено термическое разложение группы каменных углей, для которых характерен выход летучих в пределах 15-40% и содержание углерода 80-90%. Особенностью этих углей является способность образовывать при термическом разложении прочный спёкшийся или сплавленный кокс, а в зоне температур 400-4800С находится в своеобразном «пластическом состоянии». Именно эти угли служат основным сырьём для наиболее распространенного в настоящее время процесса термической переработки углей – высокотемпературное коксование. Эти, так называемые коксующиеся угли по физическим характеристикам занимают особое положение в генетическом ряду углей. В ряду углей, различающихся содержанием углерода, их отличают минимальные значения коэффициентов теплопроводности, действительной плотности, удельной абсорбции поверхностно-активных веществ из раствора и в тоже время способность давать максимальный выход экстракта при высокотемпературной экстракции. В соответствующих генетических рядах они относительно обеднены кислородом и отличаются большим содержанием водорода, связанного с углеродом.

По мнению Н. С. Грязнова, способность углей одинаковой степени метаморфизма и сходного петрографического состава к переходу в пластическое состояние и спеканию определяется степенью восстановленности, т. е. главным образом соотношением содержания водорода и кислорода и их связями в структуре органической массы. Именно это влияет на согласованное изменение ряда специфических свойств углей, достигающие экстремума для углей средней степени метаморфизма. Характерный минимум диэлектрической проницаемости углей, например, обусловлен для жирных и коксовых углей уменьшением числа кислородосодержащих функциональных групп и водородных связей.

Именно для наиболее способных к образованию подвижной пластической массы жирных углей характерно и наибольшее значение отношения Н/О – водородно-кислородного индекса. И в тоже время ароматические структуры органической массы углей этого типа остаются сравнительно мало конденсированными. Число ароматических циклов в структурных единицах жирных и коксовых углей составляет 3,5-3,7 против 2,9 – для длиннопламенных углей. Поэтому «жидкие» продукты первичного разложения органической массы этих углей обладают значительной подвижностью.

С помощью восстановительных процессов, приводящих к образованию коксующихся углей, можно объяснить и повышенную гидрофобность углей, которая достигает максимума именно у жирных и коксовых углей. Всё это приводит к тому, что в области температуры, соответствующей максимуму термического разложения органической массы коксующихся углей, образуется значительное количество жидких продуктов разложения, близких по структуре к исходному углю и способных диспергировать твёрдую фазу.

Можно установить следующие основные этапы механизма перехода в пластическое состояние углей:

1. перераспределение водорода и избирательное гидрирование части промежуточных продуктов, образующих твёрдую фазу;

2. формирование полидисперсной системы и возникновение непрерывного спектра молекулярных масс промежуточных продуктов;

3. достижение максимальной текучести в условиях убыли жидкой фазы в результате снижения её молекулярной массы;

4. зарождение и развитие надмолекулярных (твёрдофазных) образований в пластической массе углей, её структурирование и отверждение в ходе ароматизации.

Рис.3. Температурные границы и интервал пластичности типовых углей Кузбасса (сплошной линией – интервалы перехода к состоянию наибольшей текучести, цифра – толщина пластического слоя)

Температурный диапазон существования пластического состояния различен для углей разной степени метаморфизма (рис. 3). Как видно, этот диапазон максимален для жирных углей, а повышение степени метаморфизма смещает область пластического состояния в зону более высоких температур.

В каждый момент в пластической массе угля сосуществуют разлагающейся уголь, претерпевающая изменения жидкая фаза, образующаяся новая твёрдая фаза. Термически перерабатываемый уголь в пластическом состоянии находится в стадии непрерывных и необратимых изменений.


Страница: