Полимерные нанокомпозиты на основе органомодифицированных слоистых силикатов особенности структуры, получение, свойства
Рефераты >> Химия >> Полимерные нанокомпозиты на основе органомодифицированных слоистых силикатов особенности структуры, получение, свойства

Рис. 3. Схема образования полимерного нанокомпозита [24]

На самом деле, в получаемых полимерных нанокомпозитах могут присутствовать все указанные структуры, что зависит от степени распределения органоглины в полимерной матрице. Расшелушенная (эксфолиированная) структура является результатом очень хорошей степени распределения органоглины. При избытке органоглины и плохой степени диспергирования возможно присутствие агломератов органоглины в полимерной матрице, что подтверждается методом рентгено-структурного анализа [11, 12, 21, 23]. При изучении полимерных нанокомпозитов используется ряд специфических методов, которые позволяют судить о структуре материала.

Определение межслойного пространства

Один из основных методов изучения структуры нанокомпозита на основе слоистого силиката основан на определении межслойного пространства с помощью рентгеноструктурного анализа исходного и модифицированного слоистого силиката, а также для конечного полимерного нанокомпозита. Дело в том, что для этих глин в чистом виде характерен пик в малоугловой области (2в = 6-8°). Этот пик отвечает за упорядоченность в структуре силиката. Для органомодифицированных глин характерно смещение данного пика в сторону уменьшения значения 2Э. Для полимерных нанокомпозитов при хорошем распределении частиц глины по объёму полимерной матрицы, этот пик исчезает, что говорит об исчезновении характерной упорядоченности в структуре слоистого силиката. Если количество глины превышает некоторый предел распределения её в полимерной матрице, пик появляется вновь. Данная закономерность продемонстрирована на примере полибутилентерефталата(ПБТ) (рис. 4)[11].

По значению угла 2G определяют размер пакета алюмосиликата. Пакет состоит из слоя глины и межслоевого пространства. Его размер увеличивается в ряду от исходного силиката до полимерного нанокомпозита, за счет увеличения межслоевого пространства. В среднем, для монтмориллонита размер пакета равен 1,2-1,5 нм, а для органомодифицированного монтмориллонита- 1,8-3,5 нм.

Рис. 4. Данные рентгеноструктурного анализа для глины, органоглины и нанокомпозитов ПБТ/органоглина

Данные рентгеноструктурного анализа были получены и для других полимеров (рис. 5, 6, 7) [12, 25, 26].

Рис. 5. Данные рентгеноструктурного анализа для глины, органоглины и нанокомпозитов ПЭТ/органоглина

Рис. 6. Данные рентгено-структурного анализа для: I. а — диметилдиоктадециламмоний (ДМДОДА)-гекторит; б - 50 % полистирола (ПС)/50 % ДМДОДА-гекторит; в - 75 % полиэтилметакрилат (ПЭМ)/25 % ДМ ДО ДА; г - 50 % полистирол/50 % ДМДОДА-гекторит после 24 часов травления в циклогексане II. смеси полистирола, полиэтилметакрилата и органоглины: а - 23,8 % ПС/71,2 % ПЭМ/5 % ДМДОДА-гекторит; б - 21,2 % ПС/63,8 % ПЭМ/15 % ДМДОДА-гекторит; в - 18,2 % ПС/54,8 % ПЭМ/27 % ДМДОДА-гекторит; г-21,2 % ПС/63,8 % ПЭМ/15 % ДМДОДА-гекторит после 24 часов травления в циклогексане

Рис. 7. Данные рентгеноструктурного анализа для органоглины и нанокомпозитов полиамидокислоты/органоглина

Из изложенного можно сделать вывод - сравнивая данные рентгеноструктурного анализа для органоглины и нанокомпозитов можно «предел» оптимальное количество глины, которое необходимо вводить в композит. Данные рентгено-структурного анализа могут быть дополнены методами сканирующей (СЭМ) и трансмиссионной (ТЭМ) электронной микроскопии [27, 28].

Определение степени распределения частиц глины в полимерной матрице

В зависимости от степени распределения частиц глины в полимере выделяют интеркалированную и эксфолиированную структуру нанокомпозитов (рис. 8). Надо заметить, что хотя на рисунке пластинки глины показаны жесткими, на самом деле они обладают некоторой гибкостью. Формирование интеркалированной или эксфолиированной структуры зависит от многих факторов, например, от способа получения нанокомпозита, от природы глины и т.д. [29].

Рис. 8. Формирование интеркалированной и эксфолированной структуры нанокомпозитов

О степени распределения наноразмерных частиц глины можно судить по фотографиям поверхностей нанокомпозитов, сделанным с помощью СЭМ (см. рис. а, б, в, г).

Рис. 9. СЭМ фотографии поверхностей нанокомпозитов:

а - 0 % (чистый ПБТ); b - 3% органоглины в ПБТ; с - 4 % органоглины в ПБТ; d - 5% органоглины в ПБТ Гладкая поверхность говорит о равномерном распределении частиц органоглины. Поверхность нанокомпозита становится деформированной при увеличении содержания органоглины (см. рис.10 а, Ь, с, d). Возможно, это влияние агломератов глины [30, 31].

Рис. 10. ТЭМ фотографии поверхностей нанокомпозитов: а - 2 % органоглины в ПБТ; b - 3% органоглины в ПБТ; с - 4 % органоглины в ПБТ; d - 5% органоглины в ПБТ О степени распределения органоглины в нанокомпозите можно судить и по ТЭМ-фотографии (рис. 11,12). При содержании органоглины 2-3 мае. % слои глины разделены слоем полимера толщиной -4-10 нм (рис.Н). При большем содержании органоглины 4-5 мас.% большая часть глины распределена хорошо, но встречаются агломераты размером -4-8 нм.

Таким образом, из результатов рентгеноструктурного анализа и электронной микроскопии видно, что нанокомпозит при низком содержании органоглины (<3 %) состоит из эксфолиированной глины.

Способы получения полимерных нанокомпозитов на основе алюмосиликатов

Различными группами авторов [32-35] разработаны методы получения нанокомпозитов на основе органоглин:

- в процессе синтеза полимера [33, 36, 37];

- в расплаве [38, 39];

- в растворе [40-46];

- золь-гель процесс [47-50].

Для получения полимерных нанокомпозитов на основе органоглин наиболее широко используются методы получения в расплаве и в процессе синтеза полимера.

Получение полимерного нанокомпозита в процессе синтеза самого полимера (in situ) заключается в интеркалировании мономера в слои глины. Мономер мигрирует сквозь галереи органоглины и полимеризация происходит внутри слоев (рис. 13.) [19, 51].

Рис. 13. Получение полимерного нанокомпозита в процессе синтеза самого полимера (in situ) (а) - микрокомпозит, (Ь) - эксфолированный (расшелушенный) нанокомпозит, (с) - интеркалированный нанокомпозит [51]

Реакция полимеризации может быть инициирована нагреванием, излучением или соответствующим инициатором. Очевидно, что при использова-нии этого метода должны получаться наиболее удовлетворительные результаты по степени распределения частиц глины в полимерной матрице. Это может быть связано с тем, что раздвижение слоев глины происходит уже в процессе внедрения мономера в межслойное пространство. Это означает, что силой, способствующей расслоению глины, является рост полимерной цепи, в то время как при получении полимерных нанокомпозитов в растворе или расплаве основным фактором достижения необходимой степени распределения глины является лишь удовлетворительное перемешивание. Желательно проводить процесс синтеза нанокомпозита в вакууме или токе инертного газа. Помимо этого, для удовлетворительного диспергирования органоглины в полимерной матрице необходимы большие скорости перемешивания.


Страница: