Синтез слабосшитого полиэлектролита ацетоуксусный эфиракриловая кислота и взаимодействие его с ионами переходных металлов
Рефераты >> Химия >> Синтез слабосшитого полиэлектролита ацетоуксусный эфиракриловая кислота и взаимодействие его с ионами переходных металлов

Данной проблеме посвящена обширная литература, рассматривающая вопрос как с фармокологической точки зрения, так и с точки зрения физической химии полимеров. Поэтому мы не будем на нем подробно останавливаться, отметим только, что и здесь речь снова идет об управляемой (а точнее предсказуемой) контракции гидрогеля с выделением в окружающую среду несомого вещества. Отличие от ранее рассмотренных процессов состоит в том, что подбирается среда, обеспечивающая контракцию гидрогеля, а наоборот, гидрогель подбирается так, чтобы имело место его замедленное сжатие в естественной среде – человеческом организме.

Терапевтическое воздействие с использованием гидрогелей можно, в принципе, оказывать и другим способом, например, вводя лекарственные препараты в синтетические матрацы, создающие «искусственную невесомость» .Этот способ может найти применение при лечении сильных ожогов.

Гидрогели в биотехнологиях.

В настоящее время очень быстро развиваются различные приемы выращивания клеточных популяций на полимерных подложках или в контейнерах разного состава и конфигураций (от плоских подложек до полых волокон). При этом, одна из биологических проблем заключается в замене диффузии (которая в подобных устройствах затруднена) перфузией, чтобы обеспечить приток и отток продуктов клеточного метаболизма. В разряженных гидрогелях эта довольно неприятная инженерная проблема отпадает, ибо диффузии может препятствовать лишь слишком плотная упаковка растущих клеток. Следует учитывать только, что гель не должен избирательно удерживать или тормозить питательные вещества и отходы.

Значимость выращивания искусственных популяций клеток обусловлена важнейшими причинами:

1. Рост клеточной популяции сопровождается побочным, но чрезвычайно важным эффектом селекции по типу клеток, обусловленным адсорбцией. Механизм этого явления не вполне выяснен, однако, точно установлено одно: аномальные, в том числе, канцерогенные клетки в таких условиях не пролифелируют, рост их прекращается. Оставим профессионалам решение вопроса, чем обусловлено это явление – составом полимерного контейнера или деформацией самих клеток из – за адсорбции на носителе – мы привели фактические данные.

Применение гидрогелей как своего рода «гидропонной системы» для выращивания клеточных колоний само по себе не ново. Однако, в связи с вышесказанным, отчетливая перспектива устранения злокачественных клеток и подавления их роста возникает сразу, хотя о деталях говорить еще рано.

2. Цито – биохимический реактор. Можно выращивать в гидрогеле популяцию клеток, специфически «настроенную» на продукцию какого – либо фермента или иного белка «энергетической группы» , или определенной нуклеиновой кислоты и т. д. . Такой реактор легко запустить и постоянно поддерживать в рабочем состоянии; если эти реакторы работают на сплошных или волокнистых полимерных системах, то не видно причин, почему бы они не стали работать в более мягких условиях гидрогеля.

3.Имплантационная или трансплантационная хирургия. Допустим что какая – то ткань или орган вышли из строя и требуют замены или залечивания. Удобный пример – печень, она практически однородна по клеточному составу, в то время как операции на ней крайне затруднены. Можно вырастить достаточно большое количество клеток печеночной ткани и имплантировать ее вместо поврежденного участка. Благодаря высокой реакционной способности гидрогелей, регулируя их состав, можно предотвратить опасность несовместимости или отторжения.

Гидрогели как материал оптических элементов.

По своим оптическим свойствам сильно набухший гидрогель слабо отличается от воды, так как при степенях набухания порядка тысячи, концентрация собственно полимера в системе становится, очевидным образом, весьма низкой. Это означает, что набухший гель обладает достаточно высоким показателем преломления и малым поглощением в видимой области спектра. Если наряду с этим принять во внимание хорошие упруго – механические свойства набухшего геля, то становится очевидной перспективность его использования в качестве материала доя оптических элементов с управляемыми характеристиками.

Простейшим оптическим элементом такого рода являетсяконтактная линза, в настоящее время уже реализованная на практике. Следующим этапом является создание линзы с управляемым фокусным расстоянием. В каком – то смысле такая линза будет полным аналогом хрусталика в глазах млекопитающих – ее фокусное расстояние может варьироваться заданным образом различными способами, в том числе и естественно – биологическим.

Вопрос можно поставить и более широко. Обратимый коллапс гидрогеля позволяет говорить о разработке адаптивных оптических систем, в том числе и с перестраиваемой конфигурацией поверхности. Строгая теория здесь может быть построена на основе рассмотрения гидрогеля как совокупности микроинтерферометров Фабри – Перо. Изменения формы поверхности и ее общей конфигурации можно достигнуть либо подвергая гидрогель локальному воздействию электрического тока, либо создавая соответствующее распределение механических деформаций.

Такие оптические элементы могут найти применение для коррекции волнового фронта в системах формирования изображения, послужить основой для практического решения решения задачи обращения волнового фронта и так далее. Таким образом, и для технических применений в оптике на первый план выступает возможность управлять характеристиками гидрогеля посредством внешних воздействий.

Возможности использования гидрогеля в высоких технологиях.

Высокая чувствительность гидрогеля к небольшим изменениям характеристик внешней среды позволяет говорить о его использовании в технологиях, где предъявляются повышенные требования к управляемости рабочего вещества (гидрогели как «intelligent materials»). Остановимся кратко на двух примерах использования гидрогелей в высоких технологиях: в лазерной и полупроводниковой технике.

Гидрогель может быть использован как стабилизатор оптически активной среды в мощных перестраиваемых лазерах на красителях. Известно, что одним из факторов, ограничивающих мощность лазера на основе жидких активных сред, являются конвективные потоки, развивающиеся вследствие неравномерного нагрева среды. Такие потоки делают невозможной устойчивую генерацию когерентного излучения. Высокая прозрачность гидрогеля позволяет, с одной стороны, использовать его как раствор красителя. С другой стороны, поскольку гидрогель является полимерной сеткой, то вопрос о конвективных сетках отпадает сам собой. В перспективе детальное исследование взаимодействие гидрогеля с оптически активными средами может послужить основой для направленного и планового изменения спектральных характеристик таких сред.

Рассмотрим возможность применения гидрогеля как материала для полупроводниковых элементов. Локальное внешнее воздействие на набухшую сетку позволяет получать заданное распределение плотности сеточного заряда. Если же исходный гидрогель был полиамфолитным, то можно говорить и о дизайне областей с различным знаком проводимости в пределах одного образца. Технически это можно сделать используя инжектирование в полиамфолитный гидрогель веществ, образующих нерастворимые соединения либо с анионными, либо с катионными группами.


Страница: