Спектроскопия
Рефераты >> Химия >> Спектроскопия

Поверхность твердого тела

Метод рентгеноэлектронной спектроскопии в настоящее время широко применяют для исследования поверхности твердых тел. В рентгеноэлектронной спектроскопии регистрируются электроны, вышедшие из слоя вещества, в котором они не успевают отдать часть своей кинетической энергии другим электронам и атомам в образце. Толщина этого слоя ~ 20 – 40 Б, и, следовательно, рентгеноэлектронные спектры характеризуют только атомы поверхностного слоя. Вследствие этого рентгеноэлектронные спектры внутренних уровней атомов, входящих в соединение или материал, позволяют определять элементный состав поверхности, концентрацию элементов на поверхности, химическое состояние атомов на поверхности и приповерхностных слоях. Именно эти аналитические возможности метода позволяют изучать различные процессы, протекающие на поверхности.

Фотоэлектронная спектроскопия

До появления метода фотоэлектронной спектроскопии, основанного на явлении внешнего фотоэффекта, экспериментальную информацию об электронном строении атомов и молекул в основном получали из оптических спектров и спектров неупругого рассеяния электронов.

Спектры электронов, выбитых из молекул в газовой фазе вакуумным ультрафиолетовым (ВУФ) излучением, впервые экспериментально были зарегистрированы в Научно-исследовательском институте физики СПбГУ академиком А.H. Терениным, профессором Ф.И. Вилесовым и аспирантом Б.Л. Курбатовым в 1961 году. Через год аналогичный эксперимент был проведен Д. Тёрнером и М. Аль-Джебоури в Англии. Российские ученые для исследования валентных электронов многоатомных молекул (производных бензола) применили монохроматизированное излучение разряда в водороде, а английские – проточную гелиевую лампу, позволившую получить практически монохроматичное излучение в ВУФ-диапазоне (l = 584 Б) без применения диспергирующих устройств. Энергия квантов резонансной линии гелия недостаточна для ионизации внутренних (остовных) оболочек атомов и молекул, поэтому позже в Швеции в группе К. Зигбана был создан спектрометр с рентгеновским ультрамягким источником излучения. Первый вариант метода ФЭ-спектроскопии с ВУФ-источниками излучения получил аббревиатуру УФЭС, а второй – РФЭС или ЭСХА (электронная спектроскопия для химического анализа). С выпуском серийных спектрометров (70-е годы) метод ФЭС в двух модификациях стал основным методом изучения электронной структуры химических соединений и твердых тел. ФЭ-данные позволяют не только установить энергии (потенциалы) ионизации, но и определить такие важные характеристики, как симметрия, преимущественная локализация и связывающий характер многоцентровых МО.

Общая характеристика фотоэлектронных спектрометров

Теоретическое объяснение явления фотоэлектронной эмиссии (внешнего фотоэффекта) было дано еще в начале столетия в работах А. Эйнштейна и А.Ф. Иоффе, но экспериментальная реализация спектроскопии валентных фотоэлектронов атомов и молекул в газовой фазе задержалась почти на 60 лет. Сложность эксперимента объясняется необходимостью соблюдения трех требований:

1) энергия фотонов должна быть достаточной для ионизации всех или значительной части электронных уровней;

2) разрешение в спектрах должно обеспечивать анализ колебательной структуры полос (DE # 0,1 эВ);

3) вакуум в энергоанализаторе электронов не должен превышать 10- 6 мм рт.ст.

Схема одной из модификаций фотоэлектронного спектрометра, предназначенного для изучения газов и паров веществ, приведена на рис. 5. К основным узлам и системам спектрометра можно отнести источник фотонов, ионизационную кювету, энергоанализатор электронов, детектор электронов, вакуумную систему и систему управления спектрометром и обработки информации. Отличительной особенностью спектрометров с источниками излучения в области вакуумного ультрафиолета является отсутствие каких-либо окон между источником излучения (разряд в потоке рабочего газа), ионизационной кюветой, анализатором и детектором электронов.

Источники излучения

Первым двум требованиям из перечисленных выше удовлетворяет излучение разряда в гелиевой проточной лампе при давлении около 1 мм. рт. ст. Резонансная линия (переход 1s ← 2р) отвечает энергии фотона 21,22 эВ (λ = 584Å), что достаточно для ионизации от 60 до 80% валентных уровней. Линия перехода 1s ← 3р приблизительно в 20 раз слабее и анализу ФЭ-спектров не мешает. С увеличением плотности тока в разряде появляется резонансная линия ионов Не+ (hν = 40,8 эВ) с интенсивностью, достаточной для наблюдения ФЭ-спектров.

Для изучения остовных уровней наиболее удобным оказалось характеристическое изучение рентгеновских трубок с алюминиевым или магниевым анодом. Энергия AlKα – и MgKα – линий 1486,6 и 1253,6 эВ соответственно достаточна для изучения фотоэмиссии всех элементов. Полуширина дублетных линий 0,7 эВ (Mg) и 0,85 эВ (Аl) при разрешающей силе энергоанализаторов Е / ΔE = 104 позволяет получать спектры фотоэлектронов 1s-уровней элементов С, N, O, F с разрешением 1,0-1,2 эВ.

В последние два десятилетия интервал энергии фотонов от 40 до 1200 эВ заполнили источники синхротронного излучения. Электроны, движущиеся по круговой траектории с релятивистскими скоростями, излучают непрерывный спектр в очень узком конусе, направленном по касательной к электронной орбите. Для выделения нужной энергии фотонов используют монохроматоры. Источники синхротронного излучения расширили возможности метода ФЭС, поскольку появилась возможность: 1) исследовать для одного образца с высоким разрешением как валентные, так и внутренние уровни; 2) исследовать зависимость сечений ионизации уровней от энергии фотонов и 3) исследовать угловую зависимость выхода электронов по линейной поляризации излучения.

Ионизационная кювета изготовляется так, чтобы обеспечить оптимальное давление исследуемого пара в кювете (10-1 – 10-2 мм. рт. ст.) при давлении в области анализатора электронов 10- 6 мм. рт. ст. и давлении гелия в источнике излучения 1 мм. рт. ст. Необходимые перепады давления достигаются использованием длинного тонкого капилляра для ввода излучения в кювету и тонкой щели для вывода фотоэлектронов.

Энергоанализатор электронов – центральная часть любого электронного спектрометра. В первых экспериментальных установках были использованы светосильные и простые в изготовлении цилиндрические коаксиальные анализаторы с задерживающим электростатическим полем. Но разрешающая сила таких анализаторов сравнительно низкая (Е / ΔE < 200). В большинстве современных серийных спектрометров высокая разрешающая сила энергоанализаторов (Е / ΔE ~ 104-105) достигается пропусканием электронов через диспергирующее электростатическое поле, в котором отклонение является функцией энергии электрона. В приведенной на рис. 5 схеме отечественного анализатора отклоняющее поле создается между двумя концентрическими полусферами. Для записи всего спектра ступенчато изменяется потенциал между обкладками конденсатора либо между выходной щелью ионизационной кюветы и входной щелью анализатора.


Страница: