Технологические иследования процесса массопереноса - диффузии
Рефераты >> Химия >> Технологические иследования процесса массопереноса - диффузии

Феноменологическая теория дифузии

Необходимо отметить, что используемые в опытах методологические подходы и аналитические уравнения для их описания во многих случаях полностью отражают реальные технологические процессы. Рассмотрим несколько наиболее типичных задач и покажем, как они могут быть реализованы при решении проблем медицины, защиты окружающей среды, коррозии металлов. Мне кажется, что очень показательна в этом случае нерешенная задача, связанная с определением комфортных условий для человека в системе: среда — одежда (обувь) — человек. С точки зрения диффузионных процессов мы можем абстрагироваться от человека как индивидуума, а рассматривать его как некоторый «источник» паров воды периодического действия, работа которого иногда сопровождается вспышками, связанными с эмоциональным состоянием. В этом случае роль одежды (а это, как правило, пористый полимерный материал) сводится к созданию таких условий в пространстве под одеждой, чтобы влажность и температура либо сохранялись постоянными, либо изменялись достаточно медленно, чтобы организм успевал адаптироваться к условиям окружающей среды. Очевидно, что решение этой проблемы требует, с одной стороны, постановки эксперимента, с помощью которого можно было бы получить необходимую информацию о коэффициентах диффузии пористых материалов, с другой—" количественные сведения о периодичности источника и его производительности, с третьей — привлечь исследователей, специалистов в области феноменологической теории диффузии, которые помогли бы создать математический образ системы, записать и решить дифференциальные уравнения и найти такое соотношение между параметрами сорбции, пористой структуры, коэффициентов переноса, которые бы обеспечили комфортные условия во внутри-одеждном пространстве. Эта информация должна была бы послужить технологам путеводным маяком для создания новых более совершенных типов полимерных пористых материалов.

Хочется обратить внимание на еще одну интересную возможность, которую открывает совместный анализ экспериментальной и феноменологической сторон явления. Практика показывает, что при описании процессов следует обращать внимание не только на расчет констант диффузии, но и на совпадение экспериментальных кинетических зависимостей с аналитическими выражениями, получаемыми в рамках феноменологической теории. Отклонение этих зависимостей следует рассматривать не как несовершенства математической модели, а как информацию о структурно-химических особенностях строения исследуемого объекта.

Например, в сорбционных измерениях, выполняемых в изобарно-изотермических условиях, предполагается, что после установления заданных условий мгновенно на поверхности образца устанавливается равновесная растворимость диффузанта и в дальнейшем диффузия идет из этого слоя в его объем. По истечении некоторого времени достигается сорбционное равновесие и процесс диффузии завершается. Если на одной из стадий диффузионного насыщения материала наблюдается снижение веса образца, то это означает, что процесс сопровождается его кристаллизацией. Однако, если в течение длительного времени не устанавливается сорбцпонное равновесие, то это, в свою очередь, связано с химическими реакциями, происходящими в материале под влиянием окружающей среды или проникшего диффузанта. В последнем случае диффузионные измерения могут быть использованы для расчетов констант химических реакций.

Третья сторона «четырехугольника» касается молеку-лярно-кинетических аспектов диффузионных процессов. Перед ней стоит задача: проанализировать элементарный акт диффузии, затем, зная структурно-морфологические особенности строения исследуемого образца, рассчитать значения коэффициента диффузии, установить его количественную взаимосвязь с внешними параметрами, молеку-лярно-кинетическими характеристиками диффундирующих частиц и диффузионной среды. Потому, что в этом случае диффузионный процесс рассматривается, как правило, в однофазной гомогенной системе. Если речь идет о гетерогенной среде, состоящей из нескольких фаз, с разными диффузионными константами по отношению к проникающим в них частицам, то эта проблема массопереноса решается в рамках феноменологической стороны «четырехугольника».

Безградиентные методы

Описанные выше методы позволяют получать информацию о коэффициентах взаимодиффузии либо о парциальных коэффициентах диффузии, но при наличии перепада концентрации, когда в диффузионной зоне возникают растворы переменного состава. Для определения коэффициентов самодиффузии разработана группа специальных «безградиентных» методов, наибольшее распространение среди которых нашли методы радиоактивных меток и спин-эхо. Речь о взаимосвязи между этими коэффициентами пойдет ниже. Здесь лишь укажем, что молекулярно-кинетическая сторона «четырехугольника» касается расчетов коэффициентов самодиффузии или парциальных коэффициентов самодиффузии компонентов.

Основа молекулярно-кинетической теории

В основе большинства молекулярно-кинетических теорий лежат представления, согласно которым для перемещения диффундирующей частицы из одной точки пространства в другую необходимо, чтобы вблизи нее появилась микрополость (вакансия) и одновременно были бы разорваны связи, удерживающие эту частицу в ее прежнем окружении. Если представить себе, что для осуществления того или другого акта требуется преодолеть некоторый энергетический барьер, то получаемые в результате статистических обработок аналитические соотношения, связывающие коэффициент диффузии с внешними параметрами, относятся к теории активированной диффузии, основой которой является энергия активации процесса.

Существует и другая теория — «безактивационная», или теория свободного объема. В ней предполагается, что для осуществления первой части диффузионного акта нет необходимости затрачивать энергию. Микрополости постоянно существуют в объеме тела, и диффундирующая частица лишь ожидает, когда они появляются вблизи нее. В этом случае зависимости коэффициента самодиффузии от температуры, давления и состава имеют несколько иное аналитическое выражение. Наконец, может быть использована и промежуточная модель диффузного процесса, в которой учитывается безактивационный вариант образования вакансии, но разрыв связей с окружением рассматривается с. точки зрения активированной модели.

Многочисленные эксперименты показывают, что в жидкостях и полимерах чаще всего главным в элементарном акте диффузии является появление микрополости вблизи диффундирующей частицы. И только в том случае, когда диффундирующая частица образует достаточно прочные межмолекулярные связи с функциональными группами молекул диффузионной среды, необходимо учитывать второе условие процесса.

Таким образом, на основании анализа экспериментально найденных коэффициентов диффузии в зависимости от изменяемых внешних параметров можно сделать заключение о характере тепловой подвижности молекул, иными словами, о механизме элементарного акта диффузии. Естественно, что это требует знания молекулярно-кинетических моделей, которые закладываются при интерпретации экспериментальных зависимостей. Очевидно, что если доказана справедливость той или иной молекулярно-кинетической модели, то возможен и обратный ход — расчет на основании этой модели для подобных систем численных значений констант, характеризующих диффузионную подвижность частиц. В этом предсказательная сила данных исследований.


Страница: