Физико-химические закономерности формирования тонкопленочных металлополимерных систем из газовой фазы
Рефераты >> Химия >> Физико-химические закономерности формирования тонкопленочных металлополимерных систем из газовой фазы

Данный подход использовался в работах [32, 33] для описания особенностей электронно-лучевого и лазерного диспергирования ПТФЭ. Экспериментальные исследования показали, что процесс разрушения ПТФЭ электронами с энергиейи плотностью jе~100 А/м2 протекает со скоростьюVp~5×10-5 м/с2 [34]. Тогда tд = 0,5…5с (D = 10-15 м2/c), tв ~ 10-3 c, tвз ~ 3×10-6 с, tт~10-10 c, tn ~ 10-3 c. Так как tд >> tв, а tт >> tвз и tт<< tn, то диффузионный массоперенос вносит незначительный вклад в поток летучих частиц и образующийся за время диспергирования в поверхностном слое градиент температур очень мал, т.е. реализуется практически изотермический режим распыления. Оценки максимальной температуры в зоне диспергирования, проведенные на основании уравнения теплового баланса, показали, что процессы термодеструкции не могут вызывать экспериментально наблюдаемую скорость изменения массы образца. В связи с этим сделан вывод о преимущественном вкладе в диспергирование процессов радиационно-стимулированного разрушения макромолекул. Данное заключение согласуется с результатами работы [34], в которой экспериментально установлена линейная зависимость между потерей массы ПТФЭ и величиной адсорбированного электрического заряда.

В соответствии с данными представлениями в работе [32] сформулирована и решена задача аналитического описания диспергирования ПТФЭ электронами, в которой учтена зарядка поверхности, влияющая на энергию взаимодействующих с ней заряженных частиц. Показано, что со временем при отсутствии физико-химических изменений (карбонизации) в поверхностных слоях мишени скорость диспергирования Vp на начальных стадиях уменьшается со временем:

Vp = ajе[U0+(Uy-U0) exp (-t/τэ)],

где а – постоянная величина; τэ – характерное время зарядки полимера; еU0 – энергия электрона, при которой коэффициент вторичной электронной эмиссии равен единице; Uу – ускоряющее напряжение электронной пушки.

Дальнейшее развитие данные представления получили в работе [35]. Для режимов электронно-лучевого диспергирования ПТФЭ, при которых зарядка поверхности отсутствует, предложена модель, описывающая процесс образования летучих продуктов как результат термической деполимеризации, инициируемой радиационным действием электронов. Получено хорошее совпадение расчетных зависимостей с экспериментальными.

Достаточно подробно рассмотрены кинетические закономерности электронно-лучевого диспергирования полимеров [36]. При воздействии на ПТФЭ потов электронов с плотностью jе= 100…350 A/м3 и энергией 300…2000 эВ обнаружено существование начального индукционного периода τп, в течение которого происходит накопление в поверхностном слое продуктов разрушения и выделение летучих продуктов не происходит (рис. 3).

Рис. 3. Кинетика электронно-луче – вого диспергирования ПТФЭ  

По истечению τп наблюдается интенсивное выделение летучих продуктов, плотность которых со временем несколько уменьшается и для ряда полимеров вследствие формирования на поверхности карбонизированного слоя может снизиться до очень малых значений. В ряде случаев возможно возникновение автоколебаний электронного потока, плотности летучих продуктов и их давления отдачи, обусловленных, в основном, экранировкой электронного потока частицами факела [36].

При воздействии лазерного излучения на ПТФЭ основной вклад в диспергирование, по-видимому, вносят процессы термодеструкции. В работе [33] численными методами решено уравнение теплопроводности, учитывающее движение границы раздела и особенности поглощения излучения в поверхностных слоях полимеров. При проведении расчетов принято во внимание различие теплофизических характеристик аморфной и кристаллической фаз полимера. Показано, что по этой причине скорость диспергирования в локальных участках поверхности мишени может изменяться в два и более раза. Следовательно, наблюдаемое экспериментально селективное разрушение поверхности полимера при действии на него излучения СО2-лазера, образование кристаллических «нитей» [28] может быть объяснено в рамках тепловой модели.

Электронно-микроскопические исследования морфологических особенностей роста ряда полимерных покрытий показали, что при высокой скорости диспергирования уже на начальных стадиях процесса осаждения покрытий имеет место образование макрочастиц, близких по форме к сферической и имеющих примерно одинаковый размер [31]. Наиболее вероятной причиной их формирования является полимеризация в газовой фазе в результате столкновения летучих фрагментов макромолекул. Проведенные оценки показали, что при таких режимах процесса выполняется соотношение lк > λ (lк – характерный размер камеры, λ – длина свободного пробега фрагментов), указывающее на правомочность данных представлений. Если же в процессе обработки полимера концентрированным потоком энергии в поверхностном слое наблюдается образование пузырей из летучих продуктов, то внутри таких газовых образований всегда lк >λ и в его объеме протекают процессы вторичной полимеризации. При этом, как показывают расчеты, значение длины свободного пробега незначительно зависит от массы фрагментов макромолекул, образующихся при диспергировании.

В работе [31] сформулирована модель роста фрагментов в результате неупругого столкновения их в газовой фазе с активными частицами. Для параллельного потока частиц, распространяющегося в направлении х, установлено, что средний объем частиц в газовой фазе

, (1)

где: средний объем фрагмента; jn, ja – плотность потока фрагментов и активных частиц; k – константа.

Если же поток летучих частиц диспергирования является расходящимся, то изменение линейной плотности частиц в радиальном направлении обусловлено не только процессами полимеризации, но и изменением заполняемого ими объема. В этом случае

Vк =kVo`jn,o ro{1‑ro/r exp[-jak (r-ro)]+rojak[E1(jakro) – E1(jak2)]}, (2)

где jn,o – плотность потока фрагментов у поверхности мишени; E1(х) – интегральная показательная функция.

Анализ (1) и (2) показывает, что при малых значениях х объем частиц линейно возрастает при увеличении пути, пройденного частицей: Vк= Vo(1+kх). При х >> λ рост частицы практически прекращается, и ее максимальный объем составляет Vк= Vo(1+ jn,o /ja). Отметим, что при создании в камере неоднородных электрических и магнитных полей, электрических разрядов, физико-химические процессы имеют более сложный характер. Наблюдается, в частности, пространственное перераспределение массовых потоков, изменение активности частиц в процессе их движения.

При образовании полимерного покрытия на поверхности подложки основными элементарными актами являются: адсорбция частиц, химическое взаимодействие их между собой, тепловая десорбция низкомолекулярных фрагментов, ионно- и электронно-стимулированная полимеризация, распыление покрытия в результате действия на него частиц потока. В ряде случаев существенное влияние на скорость роста покрытий и их свойства оказывают химически активные низкомолекулярные соединения, например, кислородосодержащие, которые могут не являться продуктами распыления исходного полимера и вводятся в газовую фазу для инициирования полимеризационных процессов [38].


Страница: