Физико-химические методы анализа, их классификация и основные приёмы
Рефераты >> Химия >> Физико-химические методы анализа, их классификация и основные приёмы

По способу количественных определений различают без эталонные и эталонные инструментальные методы анализа.

Без эталонные методы основаны на строгих закономерностях, формульное выражение которых позволяет пересчитать интенсивность измеренного аналитического сигнала непосредственно в количестве определяемого вещества с привлечением только табличных величин. В качестве такой закономерности может выступать, например, закон Фарадея, позволяющий по току и времени электролиза рассчитать количество определяемого вещества в растворе при кулонометрическом титровании. Безэталонных методов очень мало, поскольку каждое аналитическое определение представляет собой систему сложных процессов, в которых невозможно теоретически учесть влияние каждого из многочисленных действующих факторов на результат анализа. В связи с этим при анализах пользуются определёнными приёмами, позволяющими экспериментально учесть эти влияния. Наиболее распространённым приёмом является применение эталонов, т.е. образцов веществ или материалов с точно известным содержанием определяемого элемента (или нескольких элементов). При проведении анализа измеряют определяемое вещество исследуемого образца и эталона, сравнивают полученные данные и по известному содержанию элемента в эталоне рассчитывают содержание этого элемента в анализируемом образце. Эталоны могут быть изготовлены промышленным способом (стандартные образцы, стали-нормали) или приготовляются в лаборатории непосредственно перед проведением анализа (образцы сравнения). Если в качестве стандартных образцов применяют химически чистые вещества (примесей меньше 0.05%), то их называют стандартными веществами.

На практике количественные определения инструментальными методами осуществляют по одному из трёх способов: градуировочной функции (стандартных серий), стандартов (сравнения) или стандартных добавок.

При работе по методу градуировочной функции с помощью стандартных веществ или стандартных образцов получают ряд образцов (или растворов), содержащих различные, но точно известные количества определяемого компонента. Иногда этот ряд называют стандартной серией. Затем проводят анализ этой стандартной серии и по полученным данным вычисляют значение чувствительности К (в случае линейной градуировочной функции). После этого измеряют интенсивность аналитического сигнала А в исследуемом объекте и вычисляют количество (массу, концентрацию) искомого компонента с помощью уравнения связи или находят по градуировочному графику (см. рис.2.1.1).

Метод сравнения (стандартов) применим только для линейной градуировочной функции. Определение данного компонента проводят в стандартном образце (стандартном веществе) и получают

.

Потом определяют в анализируемом объекте

.

Делением первого уравнения на второе исключают чувствительность

и вычисляют результат анализа

.

Метод стандартных добавок применим тоже только к линейной градуировочной функции. В этом методе сначала проводят анализ навески исследуемого объекта и получают , затем к навеске добавляют известное количество (массу, объём раствора) определяемого компонента и после анализа получают

.

Делением первого уравнения на второе исключают К и получают формулу для расчёта результатов анализа:

.

Спектр вещества получают, воздействуя на него температурой, потоком электронов, световым потоком (электромагнитной энергией) с определённой длиной волны (частоты излучения) и другими способами. При определённой величине энергии воздействия вещество способно перейти в возбуждённое состояние. При этом происходят процессы, приводящие к появлению в спектре излучения с определённой длиной волны (табл.2.2.1).

Излучение, поглощение, рассеяние или рефракция электромагнитного излучения может рассматриваться как аналитический сигнал, несущий информацию о качественном и количественном составе вещества или о его структуре. Частота (длина волны) излучения определяется составом исследуемого вещества, а интенсивность излучения пропорциональна числу частиц, вызвавших его появление, т.е. количеству вещества или компонента смеси.

Каждый из аналитических методов обычно использует не полный спектр вещества, охватывающий диапазон длин волн от рентгеновских излучений до радиоволн, а только определённую его часть. Спектральные методы обычно различают по диапазону длин волн спектра, являющемуся рабочим для данного метода: ультрафиолетовые (УФ), рентгеновские, инфракрасные (ИК), микроволновые и т.д.

Методы, работающие в УФ, видимом и ИК диапазоне называют оптическими. Они больше всего применяются в спектральных методах вследствие сравнительной простоты оборудования для получения и регистрации спектра.

Атомно-эмиссионный анализ (АЭА) основан на качественном и количественном определении атомного состава вещества путём получения и изучения спектров эмиссии атомов, входящих в состав вещества.

Пи АЭА анализируемая проба вещества вводится в источник возбуждения спектрального прибора. В источнике возбуждения данная проба подвергается сложным процессам, заключающимся в плавлении, испарении, диссоциации молекул, ионизации атомов, возбуждении атомов и ионов.

Возбуждённые атомы и ионы через очень короткое время (~10-7-108с) самопроизвольно возвращаются из неустойчивого возбуждённого состояния в нормальное или промежуточное состояние. Это приводит к излучению света с частотой  и появлению спектральной линии.

Общую схему атомной эмиссии можно представить так:

А + Е  А*  А + h

Степень и интенсивность протекания этих процессов зависит от энергии источника возбуждения (ИВ).

Наиболее распространёнными ИВ являются: газовое пламя, дуговые и искровые разряды, индукционно связанная плазма (ИСП). Их энергетической характеристикой можно считать температуру.

Количественный АЭА основан на зависимости между концентрацией элемента и интенсивностью его спектральных линий, которая определяется формулой Ломакина:

,

где I - интенсивность спектральной линии определяемого элемента; c - концентрация; a и b - константы.

Величины a и b зависят от свойств аналитической линии, ИВ, соотношения концентраций элементов в пробе, поэтому зависимость обычно устанавливается эмпирически для каждого элемента и каждого образца. На практике обычно пользуются методом сравнения с эталоном.


Страница: